Circuit Theory and Other Discrete Physical Models



In this chapter we present linear electric circuit theory as the central physical model for performing calculus on networks. We adopt circuit theory as the central physical model for applying and understanding the concepts of discrete calculus on graphs for three reasons: because much of the progress in graph theory over the last century was created in the context of circuit theory; because of the early connection made between circuit theory and algebraic topology (Branin Jr. in Proc. of Conf. on Neural Networks, pp. 453–491, 1966; Roth in Proceedings of the National Academy of Sciences of the United States of America 41(7):518–521, 1955); and because circuits are physical, realizable systems which need not be seen as discretizations of an underlying continuous domain but rather as a domain unto themselves. Our focus in this chapter will be to cover the main concepts in linear circuit theory from an algebraic standpoint with a focus on operators. This will prepare the reader with notation and concepts that tie naturally to the previous chapter in which the discrete analogues of differential operators were introduced. We begin with definitions of the physical quantities and corresponding quantities in circuit theory, then proceed to define the laws that relate the quantities to each other, treat methods of solving for the unknowns, and end by connecting circuit theory to other discrete processes.


Markov Random Field Incidence Matrix Laplacian Matrix Circuit Theory Dependent Source 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 9.
    Anandkumar, A., Tong, L., Swami, A.: Detection of Gauss–Markov random field on nearest-neighbor graph. In: IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2007, vol. 3 (2007) Google Scholar
  2. 12.
    Arenas, A., Díaz-Guilera, A., Kurths, J., Moreno, Y., Zhou, C.: Synchronization in complex networks. Physics Reports 469(3), 93–153 (2008) MathSciNetCrossRefGoogle Scholar
  3. 26.
    Belykh, I., Hasler, M., Lauret, M., Nijmeijer, H.: Synchronization and graph topology. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering 15(11), 3423–3433 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  4. 34.
    Biggs, N.: Algebraic Graph Theory. Cambridge Tracts in Mathematics, vol. 67. Cambridge University Press, Cambridge (1974) zbMATHCrossRefGoogle Scholar
  5. 36.
    Biggs, N.: Algebraic potential theory on graphs. Bulletin of the London Mathematical Society 29, 641–682 (1997) MathSciNetCrossRefGoogle Scholar
  6. 58.
    Branin, F.H. Jr.: The inverse of the incidence matrix of a tree and the formulation of the algebraic-first-order differential equations of an RLC network. IEEE Transactions on Circuit Theory 10(4), 543–544 (1963) CrossRefGoogle Scholar
  7. 59.
    Branin, F.H. Jr.: The algebraic-topological basis for network analogies and the vector calculus. In: Proc. of Conf. on Generalized Networks, pp. 453–491, Brooklyn, NY (1966) Google Scholar
  8. 72.
    Chandra, A., Raghavan, P., Ruzzo, W., Smolensky, R., Tiwari, P.: The electrical resistance of a graph captures its commute and cover times. Computational Complexity 6(4), 312–340 (1996) MathSciNetCrossRefGoogle Scholar
  9. 75.
    Chen, W.: Applied Graph Theory. North-Holland, Amsterdam (1971) zbMATHGoogle Scholar
  10. 115.
    Doyle, P., Snell, L.: Random Walks and Electric Networks. Carus Mathematical Monographs, vol. 22. Math. Assoc. Am., Washington (1984) zbMATHGoogle Scholar
  11. 132.
    Feynman, R.P., Leighton, R., Sands, M.: Lectures on Physics. Addison-Wesley, Reading (1964) zbMATHGoogle Scholar
  12. 160.
    Grady, L.: Fast, quality, segmentation of large volumes — Isoperimetric distance trees. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) Computer Vision—ECCV 2006. Lecture Notes in Computer Science, vol. 3, pp. 449–462. Springer, Berlin (2006) CrossRefGoogle Scholar
  13. 161.
    Grady, L.: Random walks for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(11), 1768–1783 (2006) CrossRefGoogle Scholar
  14. 202.
    Hogan, N., Breedveld, P.: The physical basis of analogies in network models of physical system dynamics. In: Proc. of Conf. on Bond Graph Modeling and Simulation, vol. 31, pp. 96–104 (1999) Google Scholar
  15. 208.
    Howlett, P., Hewitt, W.: Mass-spring simulation using adaptive non-active points. In: Computer Graphics Forum, vol. 17, pp. 345–354 (1998) Google Scholar
  16. 210.
    Hutchinson, D., Preston, M., Hewitt, T.: Adaptive refinement for mass/spring simulations. In: 7th Eurographics Workshop on Animation and Simulation, vol. 45. Springer, Berlin (1996) Google Scholar
  17. 221.
    Kakutani, S.: Markov processes and the Dirichlet problem. Proceedings of the Japan Academy 21, 227–233 (1945) MathSciNetCrossRefGoogle Scholar
  18. 224.
    Kaufhold, J.P.: Energy formulations of medical image segmentations. Ph.D. thesis, Boston University (2000) Google Scholar
  19. 227.
    Kelly, F.: Reversibility and Stochastic Networks. Wiley, New York (1979) zbMATHGoogle Scholar
  20. 228.
    Kemeny, J., Snell, J., Knapp, A.: Denumerable Markov Chains. Springer, Berlin (1976) zbMATHCrossRefGoogle Scholar
  21. 232.
    Kirchhoff, G.: Über die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Verteilung galvanischer Ströme geführt wird. Annalen der Physik und Chemie 72, 497–508 (1847) Google Scholar
  22. 267.
    Lyons, R., Peres, Y.: Probability on Trees and Networks (2005).
  23. 270.
    Marchal, M., Promayon, E., Troccaz, J.: Simulating complex organ interactions: Evaluation of a soft tissue discrete model. In: Lecture Notes in Computer Science, vol. 3804, p. 175. Springer, Berlin (2005) Google Scholar
  24. 271.
    Markowitz, H.: The elimination form of the inverse and its application to linear programming. Management Science 3(3), 255–269 (1957) MathSciNetzbMATHCrossRefGoogle Scholar
  25. 294.
    Nilsson, J.W., Riedel, S.A.: Electric Circuits, 8th edn. Pearson/Prentice-Hall, Upper Saddle River (2008) Google Scholar
  26. 301.
    Oster, G., Desoer, C.: Tellegen’s theorem and thermodynamic inequalities. Journal of Theoretical Biology 32, 219–241 (1971) CrossRefGoogle Scholar
  27. 302.
    Oster, G., Perelson, A., Katchalsky, A.: Network thermodynamics. Nature 234(5329), 393–399 (1971) CrossRefGoogle Scholar
  28. 305.
    Penfield, P., Spence, R., Duinker, S.: Tellegen’s Theorem and Electrical Networks. MIT Press, Cambridge (1970) Google Scholar
  29. 308.
    Polya, G.: Über eine Aufgabe betreffend die Irrfahrt im Strassennetz. Mathematische Annalen 84, 149–160 (1921) MathSciNetzbMATHCrossRefGoogle Scholar
  30. 322.
    Rose, D.: A graph-theoretic study of the numerical solution of sparse positive definite systems of linear equations. In: Graph Theory and Computing, pp. 183–217. Academic Press, New York (1973) Google Scholar
  31. 323.
    Roth, J.P.: An application of algebraic topology to numerical analysis: On the existence of a solution to the network problem. Proceedings of the National Academy of Sciences of the United States of America 41(7), 518–521 (1955) MathSciNetzbMATHCrossRefGoogle Scholar
  32. 341.
    Shearer, J., Murphy, A., Richardson, H.: Introduction to System Dynamics. Addison-Wesley, Reading (1967) Google Scholar
  33. 350.
    Sinop, A.K., Grady, L.: A seeded image segmentation framework unifying graph cuts and random walker which yields a new algorithm. In: Proc. of ICCV 2007. IEEE Comput. Soc., Los Alamitos (2007) Google Scholar
  34. 357.
    Stocco, L.J., Yedlin, M.J.: Modelling robot dynamics with masses and pulleys. In: Informatics in Control, Automation and Robotics. Lecture Notes in Electrical Engineering, pp. 225–238. Springer, Berlin (2008) Google Scholar
  35. 359.
    Strang, G.: Introduction to Applied Mathematics. Wellesley-Cambridge Press, Wellesley (1986) zbMATHGoogle Scholar
  36. 360.
    Strang, G.: Computational Science and Engineering. Wellesley-Cambridge Press, Wellesley (2007) zbMATHGoogle Scholar
  37. 376.
    Tinney, W., Walker, J.: Direct solutions of sparse network equations by optimally ordered triangular factorization. Proceedings of the IEEE 55(11), 1801–1809 (1967) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2010

Authors and Affiliations

  1. 1.Siemens Corporate ResearchPrincetonUSA
  2. 2.Athinoula A. Martinos Center for Biomedical Imaging, Department of RadiologyMassachusetts General Hospital, Harvard Medical SchoolCharlestownUSA

Personalised recommendations