Abstract
Brain-computer interface (BCI) systems can provide communication and control for many users, but not all users. This problem exists across different BCI approaches; a “universal” BCI that works for everyone has never been developed. Instead, about 20% of subjects are not proficient with a typical BCI system. Some groups have called this phenomenon “BCI illiteracy”. Some possible solutions have been explored, such as improved signal processing, training, and new tasks or instructions. These approaches have not resulted in a BCI that works for all users, probably because a small minority of users cannot produce detectable patterns of brain activity necessary to a particular BCI approach. We also discuss an underappreciated solution: switching to a different BCI approach. While the term “BCI illiteracy” elicits interesting comparisons between BCIs and natural languages, many issues are unclear. For example, comparisons across different studies have been problematic since different groups use different performance thresholds, and do not account for key factors such as the number of trials or size of the BCI’s alphabet. We also discuss challenges inherent in establishing widely used terms, definitions, and measurement approaches to facilitate discussions and comparisons among different groups.
Keywords
- Motor Imagery
- Event Relate Desynchronization
- Native German Speaker
- Steady State Visual Evoke Potential
- Left Hand Movement
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options




References
Allison BZ (in press) Toward ubiquitous BCIs. In Graimann B, Allison BZ, Pfurtscheller G (eds) Brain-Computer Interfaces: Revolutionizing Human-Computer Interaction. Springer, Berlin
Allison BZ, Pineda JA (2006) Effects of SOA and flash pattern manipulations on ERPs, performance, and preference: Implications for a BCI system. Int J Psychophysiol 59:127–140
Allison BZ, Wolpaw EW, Wolpaw JR (2007) Brain computer interface systems: Progress and prospects. In: Poll E (ed) British Review of Medical Devices, Jul; 4(4):463–474
Allison BZ, McFarland DJ, Schalk G, Zheng SD, Moore Jackson M, Wolpaw JR (2008) Towards an independent SSVEP brain computer interface. Clin Neurophysiol 119(2):399–408
Allison BZ, Valbuena D, Lueth T, Teymourian A, Volosyak I, Gräser A (2010a) BCI demographics: How many (and what kinds of) people can use an SSVEP BCI? IEEE Trans Neural Syst Rehabil Eng. DOI 10.1109/TNSRE.2009.2039495
Allison BZ, Brunner C, Kaiser V, Müller-Putz G, Neuper C, Pfurtscheller G (2010b) A hybrid brain-computer interface based on imagined movement and visual attention. J Neural Eng 7(2):26007
Bin GY, Gao XR, Wang YJ, Hong B, Gao SK (2009) IEEE Comput Intell Mag 4(4):22 –26
Blakely T, Miller KJ, Zanos SP, Rao RP, Ojemann JG (2009) Robust long-term control of an electrocorticographic brain-computer interface with fixed parameters. Neurosurg Focus 27(1):E13
Blankertz B, Müller K-R, Curio G, Vaughan TM, Schalk G, Wolpaw JR, Schlögl A, Neuper C, Pfurtscheller G, Hinterberger T, Schröder M, Birbaumer N (2004) Progress and perspectives in detection and discrimination of EEG single trials. IEEE Trans Biomed Eng 51(6):1044–1051
Blankertz B, Losch Y, Krauledat M, Dornhege G, Curio G, Müller K-R (2008) The Berlin Brain-Computer Interface: Accurate performance from first-session in BCI-naive subjects. IEEE Trans Biomed Eng 55:2452–2462
Brunner C, Allison BZ, Krusienski DJ, Kaiser V, Müller-Putz GR, Neuper C, Pfurtscheller G (2010) Improved signal processing approaches for a hybrid brain-computer interface simulation. J Neurosci Methods 188(1):165–173
Buttfield A, Ferrez PW, Millán JR (2006) Towards a robust BCI: Error potentials and online learning. IEEE Trans Neural Syst Rehabil Eng 14(2):164–168
Cheng M, Gao XR, Gao SG, Xu DF (2002) Design and implementation of a brain-computer interface with high transfer rates. IEEE Trans Biomed Eng 49(10):1181–1186
Conroy MA, Polich J (2007) Normative variation of P3a and P3b from a large sample (N=120): Gender, topography, and response time. J Psychophysiol 21:22–32
Faller J, Müller-Putz G, Schmalstieg D, Pfurtscheller G (2010) An application framework for controlling an avatar in a desktop based virtual environment via a software SSVEP brain-computer interface. Presence: Teleoperators and Virtual Environments 19(1):25–34
Farwell LA, Donchin E (1988) Talking off the top of your head: Toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr Clin Neurophysiol 70:510–523
Ferrez PW, Millán Jdel R (2008) Error-related EEG potentials generated during simulated brain-computer interaction. IEEE Trans Biomed Eng 55(3):923–929
Friedrich EVC, McFarland DJ, Neuper C, Vaughan TM, Brunner P, Wolpaw JR (2009) A scanning protocol for sensorimotor rhythm-based brain-computer interface. Biol Psychol 80:169–175
Gonsalvez CJ, Polich J (2002) P300 amplitude is determined by target-to-target interval. Psychophysiology 39(3):388–396
Guger C, Edlinger G, Harkam W, Niedermayer I, Pfurtscheller G (2003) How many people are able to operate an EEG-based brain-computer interface (BCI)? IEEE Trans Neural Syst Rehabil Eng 11:145–147
Guger C, Daban S, Sellers E, Holzner C, Krausz G, Carabalona R, Gramatica F, Edlinger G (2009) How many people are able to control a P300-based brain-computer interface (BCI)? Neurosci Lett 462(1):94–8
Hochberg LR, Serruya MD, Friehs GM, Mukand JA, Saleh M, Caplan AH, Branner A, Chen D, Penn RD, Donoghue JP (2006) Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442(7099):164–171
Jing J, Allison BZ, Brunner C, Wang B, Wang X, Pfurtscheller G (2010) P300 Chinese input system based on PSO-LDA. Biomed Eng 55(1):5–18
Kübler A, Neumann N, Kaiser J, Kotchoubey B, Hinterberger T, Birbaumer N (2001) Brain computer communication: Self-regulation of slow cortical potentials for verbal communication. Arch Phys Med Rehabil 82:1533–1539
Kübler A, Müller K-R (2007) Toward brain-computer interfacing. In: An Introduction to Brain-Computer Interfacing. MIT Press, Boston, pp 1–25
Kübler A, Birbaumer N (2008) Brain-computer interfaces and communication in paralysis: Extinction of goal directed thinking in completely paralysed patients? Clin Neurophysiol 119(11):2658–2666
Kübler A, Furdea A, Halder S, Hammer EM, Nijboer F, Kotchoubey B (2009) A brain-computer interface controlled auditory event-related potential (P300) spelling system for locked-in patients. Ann NY Acad Sci 1157:90–100
Leeb R, Lee F, Keinrath C, Scherer R, Bischof H, Pfurtscheller G (2007) Brain-computer communication: Motivation, aim and impact of exploring a virtual apartment. IEEE Trans Neural Syst Rehabil Eng 15:473–482
Lenhardt A, Kaper M, Ritter HJ (2008) An adaptive P300-based online brain-computer interface. IEEE Trans Neural Syst Rehabil Eng 16(2):121–130
Mason SG, Bashashati A, Fatourechi M, Navarro KF, Birch GE (2007) A comprehensive survey of brain interface technology designs. Ann Biomed Eng 35:137–169
Millán Jdel R, Mouriño J (2003) Asynchronous BCI and local neural classifiers: An overview of the Adaptive Brain Interface project. IEEE Trans Neural Syst Rehabil Eng 11(2):159–161
Müller-Putz GR, Scherer R, Neuper C, Pfurtscheller G (2006) Steady-state somatosensory evoked potentials: Suitable brain signals for brain-computer interfaces? IEEE Trans Neural Syst Rehabil Eng 14(1):30 –37
Müller-Putz GR, Scherer R, Brunner C, Leeb R, Pfurtscheller G (2008) Better than random? A closer look on BCI results. Int J Bioelectromagn 10:52–55
Neuper C, Pfurtscheller G (in press) Neurofeedback training for BCI control. In: Brain-Computer Interfaces: Revolutionizing Human-Computer Interaction. Graimann B, Allison BZ, Pfurtscheller G (eds) Springer, Berlin
Neuper C, Scherer R, Reiner M, Pfurtscheller G (2005) Imagery of motor actions: Differential effects of kinesthetic and visual-motor mode of imagery in single-trial EEG. Brain Res Cogn Brain Res 25(3):668–677
Nijboer F, Broermann U (in press) Brain-computer interfaces for communication and control in locked-in patients. Toward ubiquitous BCIs. In: Graimann B, Allison BZ, Pfurtscheller G (eds) Brain-Computer Interfaces: Revolutionizing Human-Computer Interaction. Springer, Berlin
Nijboer F, Furdea A, Gunst I, Mellinger J, McFarland DJ, Birbaumer N, Kübler A (2008) An auditory brain-computer interface (BCI). J Neurosci Methods 167(1):43–50
Nijholt A, Tan D, Pfurtscheller G, Brunner C, Millán JR, Allison BZ, Graimann B, Popescu F, Blankertz B, Müller K-R (2008) Brain-computer interfacing for intelligent systems. IEEE Intell Syst 23:72–79
Nikulin VV, Hohlefeld FU, Jacobs AM, Curio G (2008) Quasi-movements: A novel motor-cognitive phenomenon. Neuropsychologia 46(2):727–742
Perelmouter J, Birbaumer N (2000) A binary spelling interface with random errors. IEEE Trans Rehabil Eng 8:227–232
Pfurtscheller G, Neuper C (in press) Dynamics of sensorimotor oscillations in a motor task. In: Graimann B, Allison BZ, Pfurtscheller G (eds) Brain-Computer Interfaces: Revolutionizing Human-Computer Interaction. Springer, Berlin
Pfurtscheller G, Flotzinger D, Pregenzer M, Wolpaw JR, McFarland D (1996) EEG-based brain computer interface (BCI). Search for optimal electrode positions and frequency components. Med Prog Technol 21(3):111–121
Pfurtscheller G, Neuper C, Guger C, Harkam W, Ramoser H, Schlögl A, Obermaier B, Pregenzer M (2000) Current trends in Graz Brain-Computer Interface (BCI) research. IEEE Trans Rehabil Eng 8(2):216–219
Pfurtscheller G, Müller-Putz GR, Schlögl A, Graimann B, Scherer R, Leeb R, Brunner C, Keinrath C, Lee F, Townsend G, Vidaurre C, Neuper C (2006) 15 years of BCI research at Graz University of Technology: Current projects. IEEE Trans Neural Syst Rehabil Eng 14:205–210
Pfurtscheller G, Müller-Putz GR, Scherer R, Neuper C (2008) Rehabilitation with brain-computer interface systems. IEEE Comput Mag 41:58–65
Polich J (1986) Normal variation of P300 from auditory stimuli. Electroencephalogr Clin Neurophysiol 65:236–240
Popescu F, Fazli S, Badower Y, Blankertz B, Müller K-R (2007) Single trial classification of motor imagination using 6 dry EEG electrodes. PLoS One 2(7):e637
Schalk G, Wolpaw JR, McFarland DJ, Pfurtscheller G (2000) EEG-based communication: Presence of an error potential. Clin Neurophysiol 111(12):2138–2144
Schalk G, Miller KJ, Anderson NR, Wilson JA, Smyth MD, Ojemann JG, Moran DW, Wolpaw JR, Leuthardt EC (2008) Two-dimensional movement control using electrocorticographic signals in humans. J Neural Eng 5(1):75–84
Scherer R, Müller GR, Neuper C, Graimann B, Pfurtscheller G (2004) An asynchronously controlled EEG-based virtual keyboard: Improvement of the spelling rate. IEEE Trans Neural Syst Rehabil Eng 51:979–984
Scherer R, Lee F, Schlögl A, Leeb R, Bischof H, Pfurtscheller G (2008) Toward self-paced brain-computer communication: Navigation through virtual worlds. IEEE Trans Biomed Eng 55(2):675–682
Sellers EW, Donchin E (2006) A P300-based brain-computer interface: Initial tests by ALS patients. Clin Neurophysiol 117(3):538–548
Sullivan TJ, Deiss SR, Jung T-P, Cauwenberghs G (2008) A brain-machine interface using dry-contact, low-noise EEG sensors. In: Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS’2008), Seattle, USA, pp 1986–1989
Wang Y, Wang R, Gao X, Hong B, Gao S (2006) A practical VEP-based brain-computer interface. IEEE Trans Neural Syst Rehabil Eng 14:234–240
Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM (2002) Brain-computer interfaces for communication and control. Clin Neurophysiol 113:767–791
Wolpaw JR, Loeb GE, Allison BZ, Donchin E, do Nascimento OF, Heetderks WJ, Nijboer F, Shain WG, Turner JN (2006) BCI meeting 2005—Workshop on signals and recording methods. IEEE Trans Neural Syst Rehabil Eng 14:138–141
Acknowledgements
This work was supported in part by two grants: the Information and Communication Technologies Coordination and Support action “FutureBNCI”, Project number ICT-2010-248320; and the Information and Communication Technologies Collaborative Project action “BrainAble”, Project number ICT-2010-247447. We are grateful to Dr. Florin Popescu for suggesting the term “proficiency” as an alternative to “literacy”, and to Prof. Dr. John Polich, Prof. Dr. Andrea Kübler, Dr. Femke Nijboer, and Dr. Günter Krausz for comments. We thank Dr. Clemens Brunner for help with Figs. 3.1–3.3, and Dr. Jin Jing for providing Fig. 3.4. We also thank Josef Faller for help with formatting, and we thank an anonymous reviewer for insightful comments.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag London Limited
About this chapter
Cite this chapter
Allison, B.Z., Neuper, C. (2010). Could Anyone Use a BCI?. In: Tan, D., Nijholt, A. (eds) Brain-Computer Interfaces. Human-Computer Interaction Series. Springer, London. https://doi.org/10.1007/978-1-84996-272-8_3
Download citation
DOI: https://doi.org/10.1007/978-1-84996-272-8_3
Publisher Name: Springer, London
Print ISBN: 978-1-84996-271-1
Online ISBN: 978-1-84996-272-8
eBook Packages: Computer ScienceComputer Science (R0)