Skip to main content

MATLAB-Based Tools for BCI Research

  • Chapter

Part of the Human-Computer Interaction Series book series (HCIS)

Abstract

We first discuss two MATLAB-centered solutions for real-time data streaming, the environments FieldTrip (Donders Institute, Nijmegen) and DataSuite (Data- River, Producer, MatRiver) (Swartz Center, La Jolla). We illustrate the relative simplicity of coding BCI feature extraction and classification under MATLAB (The Mathworks, Inc.) using a minimalist BCI example, and then describe BCILAB (Team PhyPa, Berlin), a new BCI package that uses the data structures and extends the capabilities of the widely used EEGLAB signal processing environment. We finally review the range of standalone and MATLAB-based software currently freely available to BCI researchers.

Keywords

  • Data Stream
  • Linear Discriminant Analysis
  • Independent Component Analysis
  • Independent Component Analysis
  • Data Streaming

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-84996-272-8_14
  • Chapter length: 19 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-1-84996-272-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.00
Price excludes VAT (USA)
Hardcover Book
USD   159.00
Price excludes VAT (USA)
Fig. 14.1
Fig. 14.2
Fig. 14.3
Fig. 14.4
Fig. 14.5

References

  • Adapt © 1987–2003 and Varieté, © 2000, 2001 are property of EEG Solutions LLC, and are used under free license for scientific non-profit research

    Google Scholar 

  • Bell AJ, Sejnowski TJ (1995) An information-maximization approach to blind separation and blind deconvolution. Neural Comput 7(6):1129–1159

    CrossRef  Google Scholar 

  • Babiloni F, et al. (1995) Performances of surface Laplacian estimators: A study of simulated and real scalp potential distributions. Brain Topogr 8(1):35–45

    CrossRef  Google Scholar 

  • Bilmes J (1998) Gentle Tutorial of the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models. International Computer Science Institute

    Google Scholar 

  • Birbaumer N, et al. (2009) Neurofeedback and brain-computer interface clinical applications. Int Rev Neurobiol 86:107–187

    CrossRef  Google Scholar 

  • Blankertz B, Curio G, Müller K (2002a) Classifying single trial EEG: Towards brain computer interfacing. In: Diettrich T, Becker S, Ghahramani Z (eds) Advances in Neural Inf Proc Systems (NIPS 01), pp 157–164

    Google Scholar 

  • Blankertz B, et al (2002b) Single trial detection of EEG error potentials: A tool for increasing BCI transmission rates. In: Artificial Neural Networks—ICANN 2002

    Google Scholar 

  • Delorme A, Makeig S (2004) EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134(1):9–21

    CrossRef  Google Scholar 

  • Dornhege G, Blankertz B, Curio G (2003a) Speeding up classification of multi-channel brain-computer interfaces: Common spatial patterns for slow cortical potentials. In: First International IEEE EMBS Conference on In Neural Engineering

    Google Scholar 

  • Dornhege G, et al (2003b) Combining features for BCI, In: Becker S, Thrun S, Obermayer K (eds), Proc Systems (NIPS 02), pp 1115–1122

    Google Scholar 

  • Farwell L, Donchin E (1988) Talking off the top of your head: Toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr Clin Neurophysiol 70(6):510–523

    CrossRef  Google Scholar 

  • Figueiredo M, Jain A (2002) Unsupervised learning on finite mixture models. IEEE Trans Pattern Anal Mach Intell 24(3)

    Google Scholar 

  • Fisher R (1936) The use of multiple measurements in taxonomic problems. Ann Eugen 7:179–188

    CrossRef  Google Scholar 

  • Friedman J (2002) Regularized discriminant analysis. J Am Stat Assoc 84(405):165–175

    CrossRef  Google Scholar 

  • Hinton G, Osindero S, Teh Y (2006) A fast learning algorithm for deep belief nets. Neural Comput 18:1527–1554

    MathSciNet  MATH  CrossRef  Google Scholar 

  • Jaakkola T, Jordan M (1997) A variational approach to Bayesian logistic regression models and their extensions. In: Sixth International Workshop on Artificial Intelligence and Statistics

    Google Scholar 

  • Jung T-P, et al. (1997) Estimating alertness from the EEG power spectrum. IEEE Trans Biomed Eng 44(1):60–69

    CrossRef  Google Scholar 

  • Kothe C (2009) Design and Implementation of a Research Brain-Computer Interface. Berlin Institute of Technology, Berlin. Section 8.2.1

    Google Scholar 

  • Lin C-T, et al. (2008) A noninvasive prosthetic platform using mobile & wireless EEG. Proc IEEE 96(7):1167–1183

    CrossRef  Google Scholar 

  • Makeig S, et al. (2009) Linking brain, mind and behavior. Int J Psychophysiol 73(2):95–100

    CrossRef  Google Scholar 

  • Makeig S, et al. (2002) Dynamic brain sources of visual evoked responses. Science 295(5555):690–694

    CrossRef  Google Scholar 

  • Makeig S, Inlow M (1993) Lapses in alertness: Coherence of fluctuations in performance and EEG spectrum. Electroencephalogr Clin Neurophysiol 86(1):23–35

    CrossRef  Google Scholar 

  • Makeig S, et al (1996) Independent component analysis of electroencephalographic data. In: Touretzky D, Mozer M, Hasselmo M (eds), Advances in Neural Information Processing Systems, pp 145–151

    Google Scholar 

  • Miner LA, McFarland DJ, Wolpaw JR (1998) Answering questions with an electroencephalogram-based brain-computer interface. Arch Phys Med Rehabil 79(9):1029–1033

    CrossRef  Google Scholar 

  • Palmer JA, et al (2007) Modeling and estimation of dependent subspaces with non-radially symmetric and skewed densities. In: 7th International Conference on Independent Component Analysis and Signal Separation, London, UK

    Google Scholar 

  • Perrin F et al. (1987) Mapping of scalp potentials by surface spline interpolation. Electroencephalogr Clin Neurophysiol 66(1):75–81

    MathSciNet  CrossRef  Google Scholar 

  • Ramoser H, Müller-Gerking J, Pfurtscheller G (1998) Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Trans Rehabil Eng 1998(8):441–446

    Google Scholar 

  • Schalk G, et al. (2004) BCI2000: A general-purpose brain-computer interface (BCI) system. IEEE Trans Biomed Eng 51(6):1034–1043

    CrossRef  Google Scholar 

  • Schlögl A (2000) The electroencephalogram and the Adaptive Autoregressive Model: Theory and Applications. Shaker Verlag, Aachen. ISBN3-8265-7640-3

    Google Scholar 

  • Schlögl A, Brunner C (2000) Biosig: A free and open source software library for BCI research. Computer 41(10):44–50

    CrossRef  Google Scholar 

  • Schölkopf B, Smola A (2002) Learning with Kernels. MIT Press, Cambridge, MA

    Google Scholar 

  • Sellers E, et al. (2006) A p300 event-related potential brain-computer interface (BCI): The effects of matrix size and inter stimulus interval on performance. Biol Psychol 73(3):242–252

    CrossRef  Google Scholar 

  • Tipping M (2001) Sparse Bayesian learning and the relevance vector machine. J Mach Learn Res 1:211–244

    MathSciNet  MATH  Google Scholar 

  • Tomioka R et al. (2006) An iterative algorithm for spatio-temporal filter optimization. In: 3rd International BCI Workshop and Training Course. Verlag der Technischen Universität Graz, Graz

    Google Scholar 

  • Venthur B, Blankertz B (2008) A platform-independent open-source feedback framework for BCI systems. In: 4th International Brain-Computer Interface Workshop and Training Course

    Google Scholar 

  • Vidaurre C, Schlögl (2008) A comparison of adaptive features with linear discriminant classifier for brain computer interfaces. In: Engineering in Medicine and Biology Society. EMBS 2008. 30th Annual International Conference of the IEEE

    Google Scholar 

  • Vlassis N, Likas A, Greedy EM (2002) Algorithm for Gaussian Mixture Learning. Neural Processing Letters, vol 15. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Zander T, Jatzev S (2009) Detecting affective covert user states with passive brain-computer interfaces. In: ACII 2009. IEEE Computer Society Press, Los Alamitos, CA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnaud Delorme .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2010 Springer-Verlag London Limited

About this chapter

Cite this chapter

Delorme, A. et al. (2010). MATLAB-Based Tools for BCI Research. In: Tan, D., Nijholt, A. (eds) Brain-Computer Interfaces. Human-Computer Interaction Series. Springer, London. https://doi.org/10.1007/978-1-84996-272-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-272-8_14

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-271-1

  • Online ISBN: 978-1-84996-272-8

  • eBook Packages: Computer ScienceComputer Science (R0)