Skip to main content

Localization Dynamics in a Binary Two-Dimensional Cellular Automaton: The Diffusion Rule

  • Chapter
Game of Life Cellular Automata

Abstract

We study a two-dimensional cellular automaton (CA), called Diffusion Rule, which exhibits diffusion-like dynamics of propagating patterns. In computational experiments we discover a wide range of mobile and stationary localizations (gliders, oscillators, glider guns, puffer trains), analyze spatio-temporal dynamics of collisions between gliders, and discuss possible applications in unconventional computing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adachia, S., Lee, J., Peper, F., Umeo, H.: Kaleidoscope of life: a 24-neighbourhood outer-totalistic cellular automaton. Physica D 237, 800–817 (2004)

    Article  Google Scholar 

  2. Adamatzky, A.: Computing in Nonlinear Media and Automata Collectives. Institute of Physics Publishing, Bristol and Philadelphia (2001)

    MATH  Google Scholar 

  3. Adamatzky, A. (ed.): Collision-Based Computing. Springer, Berlin (2002)

    MATH  Google Scholar 

  4. Adamatzky, A., Wuensche, A.: Computing in spiral rule reaction–diffusion cellular automaton. Complex Syst. 16(4), 277–297 (2006)

    MathSciNet  Google Scholar 

  5. Adamatzky, A., Costello, B.D.L., Asai, T.: Reaction–Diffusion Computers. Elsevier, Amsterdam (2005)

    Google Scholar 

  6. Adamatzky, A., Martínez, G.J., Seck-Tuoh-Mora, J.C.: Phenomenology of reaction–diffusion binary-state cellular automata. Int. J. Bifurc. Chaos 16 (10), 1–21 (2006)

    Google Scholar 

  7. Adamatzky, A., Wuensche, A., Costello, B.D.L.: Glider-based computing in reaction diffusion hexagonal cellular automata. Chaos Solitons Fractals 27(2), 287–295 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bays, C.: Candidates for the Game of Life in three dimensions. Complex Syst. 1, 373–400 (1987)

    MATH  MathSciNet  Google Scholar 

  9. Bays, C.: New game of three-dimensional life. Complex Syst. 5, 15–18 (1991)

    MATH  MathSciNet  Google Scholar 

  10. Bell, D.I.: High Life — An interesting variant of life. http://www.tip.net.au/~dbell/ (1994)

  11. Berlekamp, E.R., Conway, J.H., Guy, R.K.: Winning Ways for Your Mathematical Plays, vol. 2, Chap. 25. Academic Press, San Diego (1982)

    MATH  Google Scholar 

  12. Boccara, N., Nasser, J., Roger, M.: Particle like structures and their interactions in spatio-temporal patterns generated by one-dimensional deterministic cellular automaton rules. Phys. Rev. A 44(2), 866–875 (1991)

    Article  Google Scholar 

  13. Chaté, H., Manneville, P.: Evidence of collective behavior in cellular automata. Europhys. Lett. 14, 409–413 (1991)

    Article  Google Scholar 

  14. Cook, M.: Universality in elementary cellular automata. Complex Syst. 15(1), 1–40 (2004)

    MATH  Google Scholar 

  15. Das, R., Mitchell, M., Crutchfield, J.P.: A genetic algorithm discovers particle-based computation in cellular automata. In: Davidor, Y., Schwefel, H.-P., Männer, R. (eds.) Parallel Problem Solving from Nature-III. Lecture Notes in Computer Science, vol. 866, pp. 344–353. Springer, Berlin (1994)

    Google Scholar 

  16. Eppstein, D.: Searching for spaceships. In: Nowakowski, R.J. (ed.) More Games of No Chance. MSRI Publications, vol. 42, pp. 433–452. The Mathematical Sciences Research Institute, Berkeley (2002)

    Google Scholar 

  17. Evans, K.M.: Replicators and larger-than-life examples. In: Griffeath, D., Moore, C. (eds.) New Constructions in Cellular Automata. Santa Fe Institute Studies on the Sciences of Complexity. Oxford University Press, London (2003)

    Google Scholar 

  18. Gardner, M.: Mathematical Games — The fantastic combinations of John H. Conway’s new solitaire game Life. Sci. Am. 223, 120–123 (1970)

    Article  Google Scholar 

  19. Griffeath, D., Moore, C.: Life Without Death is P-complete. Complex Syst. 10, 437–447 (1996)

    MATH  MathSciNet  Google Scholar 

  20. Gutowitz, H.A., Victor, J.D.: Local structure theory in more that one dimension. Complex Syst. 1, 57–68 (1987)

    MATH  MathSciNet  Google Scholar 

  21. Hanson, J.E., Crutchfield, J.P.: Computational mechanics of cellular automata: an example. Phys. D 103(1–4), 169–189 (1997)

    Article  MathSciNet  Google Scholar 

  22. Heudin, J.-C.: A new candidate rule for the game of two-dimensional life. Complex Syst. 10, 367–381 (1996)

    MATH  MathSciNet  Google Scholar 

  23. Jakubowski, M.H., Steiglitz, K., Squier, R.: Computing with Solitons: A Review and Prospectus. Multiple-Valued Log. Special Issue on Collision-Based Computing 6 (5–6) (2001)

    Google Scholar 

  24. Magnier, M., Lattaud, C., Heudin, J.-K., Complexity classes in the two-dimensional life cellular automata subspace. Complex Syst. 11(6), 419–436 (1997)

    MATH  MathSciNet  Google Scholar 

  25. Martínez, G.J.: Teoría del Campo Promedio en Autómatas Celulares Similares a The Game of Life. Tesis de Maestría, CINVESTAV-IPN, México (2000)

    Google Scholar 

  26. Martínez, G.J., Adamatzky, A., McIntosh, H.V.: Phenomenology of glider collisions in cellular automaton Rule 54 and associated logical gates. Chaos Solitons Fractals 28, 100–111 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  27. Martínez, G.J., McIntosh, H.V., Seck-Tuoh-Mora, J.C.: Gliders in Rule 110. Int. J. Unconventional Computing 2(1), 1–49 (2006)

    Google Scholar 

  28. McIntosh, H.V.: Wolfram’s Class IV and a Good Life. Physica D 45, 105–121 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  29. McIntosh, H.V.: Phoenix. http://delta.cs.cinvestav.mx/~mcintosh/oldweb/pautomata.html (1994)

  30. McIntosh, H.V.: Rule 110 as it relates to the presence of gliders. http://delta.cs.cinvestav.mx/~mcintosh/oldweb/pautomata.html (1999).

  31. Mitchell, M.: Life and evolution in computers. Hist. Philos. Life Sci. 23, 361–383 (2001)

    Google Scholar 

  32. Tommaso, T., Norman, M.: Cellular Automata Machines. MIT, Cambridge (1987)

    Google Scholar 

  33. von Neumann, J.: Theory of Self-reproducing Automata. Edited and completed by Burks, A.W. University of Illinois, Urbana and London (1966)

    Google Scholar 

  34. Sedin̋a-Nadal, I., Mihaliuk, E., Wang, J., Pérez-Mun̋uzuri, V., Showalter, K.: Wave propagation in subexcitable media with periodically modulated excitability. Phys. Rev. Lett. 86, 1646–1649 (2001)

    Article  Google Scholar 

  35. Wolfram, S.: A New Kind of Science. Wolfram Media, Champaign (2002)

    MATH  Google Scholar 

  36. Wuensche, A.: Classifying cellular automata automatically. Complexity 4(3), 47–66 (1999)

    Article  MathSciNet  Google Scholar 

  37. Wuensche, A.: Self-reproduction by glider collisions: the beehive rule. In: Alife9 Proceedings, pp. 286–291. MIT, Cambridge (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Genaro J. Martínez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Limited

About this chapter

Cite this chapter

Martínez, G.J., Adamatzky, A., McIntosh, H.V. (2010). Localization Dynamics in a Binary Two-Dimensional Cellular Automaton: The Diffusion Rule. In: Adamatzky, A. (eds) Game of Life Cellular Automata. Springer, London. https://doi.org/10.1007/978-1-84996-217-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-217-9_16

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-216-2

  • Online ISBN: 978-1-84996-217-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics