Abstract
We study a two-dimensional cellular automaton (CA), called Diffusion Rule, which exhibits diffusion-like dynamics of propagating patterns. In computational experiments we discover a wide range of mobile and stationary localizations (gliders, oscillators, glider guns, puffer trains), analyze spatio-temporal dynamics of collisions between gliders, and discuss possible applications in unconventional computing.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Adachia, S., Lee, J., Peper, F., Umeo, H.: Kaleidoscope of life: a 24-neighbourhood outer-totalistic cellular automaton. Physica D 237, 800–817 (2004)
Adamatzky, A.: Computing in Nonlinear Media and Automata Collectives. Institute of Physics Publishing, Bristol and Philadelphia (2001)
Adamatzky, A. (ed.): Collision-Based Computing. Springer, Berlin (2002)
Adamatzky, A., Wuensche, A.: Computing in spiral rule reaction–diffusion cellular automaton. Complex Syst. 16(4), 277–297 (2006)
Adamatzky, A., Costello, B.D.L., Asai, T.: Reaction–Diffusion Computers. Elsevier, Amsterdam (2005)
Adamatzky, A., Martínez, G.J., Seck-Tuoh-Mora, J.C.: Phenomenology of reaction–diffusion binary-state cellular automata. Int. J. Bifurc. Chaos 16 (10), 1–21 (2006)
Adamatzky, A., Wuensche, A., Costello, B.D.L.: Glider-based computing in reaction diffusion hexagonal cellular automata. Chaos Solitons Fractals 27(2), 287–295 (2006)
Bays, C.: Candidates for the Game of Life in three dimensions. Complex Syst. 1, 373–400 (1987)
Bays, C.: New game of three-dimensional life. Complex Syst. 5, 15–18 (1991)
Bell, D.I.: High Life — An interesting variant of life. http://www.tip.net.au/~dbell/ (1994)
Berlekamp, E.R., Conway, J.H., Guy, R.K.: Winning Ways for Your Mathematical Plays, vol. 2, Chap. 25. Academic Press, San Diego (1982)
Boccara, N., Nasser, J., Roger, M.: Particle like structures and their interactions in spatio-temporal patterns generated by one-dimensional deterministic cellular automaton rules. Phys. Rev. A 44(2), 866–875 (1991)
Chaté, H., Manneville, P.: Evidence of collective behavior in cellular automata. Europhys. Lett. 14, 409–413 (1991)
Cook, M.: Universality in elementary cellular automata. Complex Syst. 15(1), 1–40 (2004)
Das, R., Mitchell, M., Crutchfield, J.P.: A genetic algorithm discovers particle-based computation in cellular automata. In: Davidor, Y., Schwefel, H.-P., Männer, R. (eds.) Parallel Problem Solving from Nature-III. Lecture Notes in Computer Science, vol. 866, pp. 344–353. Springer, Berlin (1994)
Eppstein, D.: Searching for spaceships. In: Nowakowski, R.J. (ed.) More Games of No Chance. MSRI Publications, vol. 42, pp. 433–452. The Mathematical Sciences Research Institute, Berkeley (2002)
Evans, K.M.: Replicators and larger-than-life examples. In: Griffeath, D., Moore, C. (eds.) New Constructions in Cellular Automata. Santa Fe Institute Studies on the Sciences of Complexity. Oxford University Press, London (2003)
Gardner, M.: Mathematical Games — The fantastic combinations of John H. Conway’s new solitaire game Life. Sci. Am. 223, 120–123 (1970)
Griffeath, D., Moore, C.: Life Without Death is P-complete. Complex Syst. 10, 437–447 (1996)
Gutowitz, H.A., Victor, J.D.: Local structure theory in more that one dimension. Complex Syst. 1, 57–68 (1987)
Hanson, J.E., Crutchfield, J.P.: Computational mechanics of cellular automata: an example. Phys. D 103(1–4), 169–189 (1997)
Heudin, J.-C.: A new candidate rule for the game of two-dimensional life. Complex Syst. 10, 367–381 (1996)
Jakubowski, M.H., Steiglitz, K., Squier, R.: Computing with Solitons: A Review and Prospectus. Multiple-Valued Log. Special Issue on Collision-Based Computing 6 (5–6) (2001)
Magnier, M., Lattaud, C., Heudin, J.-K., Complexity classes in the two-dimensional life cellular automata subspace. Complex Syst. 11(6), 419–436 (1997)
Martínez, G.J.: Teoría del Campo Promedio en Autómatas Celulares Similares a The Game of Life. Tesis de Maestría, CINVESTAV-IPN, México (2000)
Martínez, G.J., Adamatzky, A., McIntosh, H.V.: Phenomenology of glider collisions in cellular automaton Rule 54 and associated logical gates. Chaos Solitons Fractals 28, 100–111 (2006)
Martínez, G.J., McIntosh, H.V., Seck-Tuoh-Mora, J.C.: Gliders in Rule 110. Int. J. Unconventional Computing 2(1), 1–49 (2006)
McIntosh, H.V.: Wolfram’s Class IV and a Good Life. Physica D 45, 105–121 (1990)
McIntosh, H.V.: Phoenix. http://delta.cs.cinvestav.mx/~mcintosh/oldweb/pautomata.html (1994)
McIntosh, H.V.: Rule 110 as it relates to the presence of gliders. http://delta.cs.cinvestav.mx/~mcintosh/oldweb/pautomata.html (1999).
Mitchell, M.: Life and evolution in computers. Hist. Philos. Life Sci. 23, 361–383 (2001)
Tommaso, T., Norman, M.: Cellular Automata Machines. MIT, Cambridge (1987)
von Neumann, J.: Theory of Self-reproducing Automata. Edited and completed by Burks, A.W. University of Illinois, Urbana and London (1966)
Sedin̋a-Nadal, I., Mihaliuk, E., Wang, J., Pérez-Mun̋uzuri, V., Showalter, K.: Wave propagation in subexcitable media with periodically modulated excitability. Phys. Rev. Lett. 86, 1646–1649 (2001)
Wolfram, S.: A New Kind of Science. Wolfram Media, Champaign (2002)
Wuensche, A.: Classifying cellular automata automatically. Complexity 4(3), 47–66 (1999)
Wuensche, A.: Self-reproduction by glider collisions: the beehive rule. In: Alife9 Proceedings, pp. 286–291. MIT, Cambridge (2004)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag London Limited
About this chapter
Cite this chapter
Martínez, G.J., Adamatzky, A., McIntosh, H.V. (2010). Localization Dynamics in a Binary Two-Dimensional Cellular Automaton: The Diffusion Rule. In: Adamatzky, A. (eds) Game of Life Cellular Automata. Springer, London. https://doi.org/10.1007/978-1-84996-217-9_16
Download citation
DOI: https://doi.org/10.1007/978-1-84996-217-9_16
Publisher Name: Springer, London
Print ISBN: 978-1-84996-216-2
Online ISBN: 978-1-84996-217-9
eBook Packages: Computer ScienceComputer Science (R0)