Skip to main content

Readout of Spike Waves in a Microcolumn

  • Chapter
Frontiers in Computational and Systems Biology

Part of the book series: Computational Biology ((COBO,volume 15))

  • 1462 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. Alili, P. Patie, and J.L. Pedersen. Representations of the first hitting time density of an Ornstein–Uhlenbeck Process. Stoch Models, 21:967, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  2. L. Badel, S. Lefort, R. Brette, C.C.H. Petersen, W. Gerstner, and M.J.E. Richardson. Dynamic I–V curves are reliable predictors of naturalistic pyramidal-neuron voltage traces. J Neurophysiol, 99(2):656–666, 2008.

    Article  Google Scholar 

  3. R. Brette and W. Gerstner. Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. J Neurophysiol, 94:3637–3642, 2005.

    Article  Google Scholar 

  4. K.H. Britten, M.N. Shadlen, W.T. Newsome, and J.A. Movshon. Responses of single neurons in macaque MT/V5 as a function of motion coherence in stochastic dot stimuli. http://www.neuralsignal.org/index_data.html.

  5. D. Brown, J.F. Feng, and S. Feerick. Variability of firing of Hodgkin–Huxley and FitzHugh–Nagumo neurons with stochastic synaptic input. Phys Rev Lett, 82:4731–4734, 1999.

    Article  Google Scholar 

  6. N. Brunel and P.E. Latham. Firing rate of the noisy quadratic integrate-and-fire neuron. Neural Comput, 15:2281–2306, 2003.

    Article  MATH  Google Scholar 

  7. G. Buzsáki. Rhythms of the Brain. Oxford University Press, London, 2006.

    Book  MATH  Google Scholar 

  8. S. Deneve, P.E. Latham, and A. Pouget. Reading population codes: a neural implementation of ideal observers. Nat Neurosci, 2:740, 1999.

    Article  Google Scholar 

  9. A. Destexhe and D. Contreras. Neuronal computations with stochastic network states. Science, 314:85, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  10. S. Ditlevsen and P. Lansky. Estimation of the input parameters in the Ornstein–Uhlenbeck neuronal model. Phys Rev E, 71:011907, 2005.

    Article  MathSciNet  Google Scholar 

  11. J.F. Feng. Behaviours of spike output jitter in the integrate-and-fire model. Phys Rev Lett, 79(21):4505–4508, 1997.

    Article  Google Scholar 

  12. J.F. Feng. Computational Neuroscience, A Comprehensive Approach. Chapman & Hall/CRC, London/Boca Raton, 2003.

    Book  Google Scholar 

  13. J.F. Feng and D. Brown. Coefficient of variation greater than .5. How and When? Biol Cybern, 80:291–297, 1999.

    Article  MATH  Google Scholar 

  14. J.F. Feng and D. Brown. Integrate-and-fire models with nonlinear leakage. Bull Math Biol, 62(3):467, 2000.

    Article  MathSciNet  Google Scholar 

  15. J.F. Feng and M. Ding. Decoding spikes in a spiking neuronal network. J Phys A, Math Gen, 37:5713, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  16. N. Fourcaud-Trocme, D. Hansel, C. van Vreeswijk, and N. Brunel. How spike generation mechanisms determine the neuronal response to fluctuating inputs. J Neurosci, 23:11628, 2003.

    Google Scholar 

  17. C.W. Gardiner. Handbook of Stochastic Methods: for Physics, Chemistry and the Natural Sciences. Springer Series in Synergetics. Springer, Berlin, 1985.

    Google Scholar 

  18. W. Gerstner and W. Kistler. Spiking Neuron Models Single Neurons, Populations, Plasticity. Cambridge University Press, Cambridge, 2002.

    Book  MATH  Google Scholar 

  19. A. Göing-Jaeschke and M. Yor. A clarification note about hitting times densities for Ornstein–Uhlenbeck processes. Finance Stoch, 7:413, 2003.

    Article  MATH  Google Scholar 

  20. C.P. Hung, G. Kreiman, T. Poggio, and J.J. DiCarlo. Fast readout of object identity from macaque inferior temporal. Science, 310:863, 2005.

    Article  Google Scholar 

  21. G. Leng, C.H. Brown, P.M. Bull, D. Brown, S. Scullion, J. Currie, R.E. Blackburn-Munro, J.F. Feng, T. Onaka, J.G. Verbalis, J.A. Russell, and M. Ludwig. Responses of magnocellular neurons to osmotic stimulation involves coactivation of excitatory and inhibitory input: An experimental and theoretical analysis. J Neurosci, 21:6967–6977, 2001.

    Google Scholar 

  22. R.M. Memmesheimer and M. Timme. Designing the dynamics of spiking neural networks. Phys Rev Lett, 97:188101, 2006.

    Article  Google Scholar 

  23. E.S. Nikitin, D.V. Vavoulis, I. Kemenes, V. Marra, Z. Pirger, M. Michel, J.F. Feng, M. O’Shea, P.R. Benjamin, and G. Kemenes. Persistent sodium current is a nonsynaptic substrate for long-term associative memory. Curr Biol, 18(16):1221–1226, 2008.

    Article  Google Scholar 

  24. L. Paninski, J.W. Pillow, and E.P. Simoncelli. Maximum likelihood estimation of a stochastic integrate-and-fire neural encoding model. Neural Comput, 16:2533, 2004.

    Article  MATH  Google Scholar 

  25. F. Rieke, D. Warland, and R. Steveninck. Spikes: Exploring the Neural Code. MIT Press, Cambridge, 1997.

    Google Scholar 

  26. H. Risken and T. Frank. The Fokker–Planck Equation: Methods of Solutions and Applications. Springer, Berlin, 1984.

    MATH  Google Scholar 

  27. E. Rossoni and J.F. Feng. Decoding spike ensembles: tracking a moving stimulus. Biol Cyber, 96:99, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  28. T.D. Sanger. Neural population codes. Curr Opin Neurobiol, 13:238, 2003.

    Article  Google Scholar 

  29. M.N. Shadlen and W.T. Newsome. The variable discharge of cortical neurons: Implications for connectivity, computation, and information coding. J Neurosci, 18:3870, 1998.

    Google Scholar 

  30. R.L. Stratonovich. Topics in the Theory of Random Noise. Mathematics and Its Applications. Gordon & Breach, New York, 1967.

    MATH  Google Scholar 

  31. S. Thorpe. Speed of processing in the human visual system. Nature, 381:520, 1996.

    Article  Google Scholar 

  32. W. Truccolo and U. Eden. A point process framework for relating neural spiking activity to spiking history, neural ensemble and covariate effects. J Neurophys, 93:1074, 2005.

    Article  Google Scholar 

  33. H.C. Tuckwell. Theoretical Neurobiology. Cambridge University Press, Cambridge, 1998.

    Google Scholar 

  34. X.J. Zhang, G.Q. You, T.P. Chen, and J.F. Feng. Readout of spike waves in a microcolumn. Neural Comput, 21:3079, 2009.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (under Grant Nos. 10971196, 10771155) and a Foundation for the Author of National Excellent Doctoral Dissertation of P.R. China (FANEDD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuejuan Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Limited

About this chapter

Cite this chapter

Zhang, X. (2010). Readout of Spike Waves in a Microcolumn. In: Feng, J., Fu, W., Sun, F. (eds) Frontiers in Computational and Systems Biology. Computational Biology, vol 15. Springer, London. https://doi.org/10.1007/978-1-84996-196-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-196-7_18

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-195-0

  • Online ISBN: 978-1-84996-196-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics