Water Wave Theories and Wave Loads

Chapter
Part of the Springer Series in Reliability Engineering book series (RELIABILITY)

Abstract

This chapter is devoted to ocean wave mechanics and wave forces acting on offshore structures. It contains eleven sections. The first section gives general information on ocean waves. The second section summarizes wave theories with emphasis on Stokes and other nonlinear wave theories. In the third section, the Airy wave theory is explained in more details and the formulation for deep water conditions is presented. The fourth section describes stochastic ocean waves, transfer functions, commonly used spectral functions of sea states and the directional wave spectrum. The fifth section presents the wave–current interaction phenomenon and the sixth section is devoted to probabilistic description of sea states in the long term. The seventh section presents formulation of wave forces on structural members. The eighth and ninth sections present linearization of wave forces under wave–current and wave–structure interactions. The tenth section, gives formulations of consistent member wave forces, member added mass, and hydrodynamic damping ratios. The eleventh section presents illustrative examples.

References

  1. 1.
    Smith CB (2006) Extreme waves. Joseph Henry Press, WashingtonGoogle Scholar
  2. 2.
    Reddy MPM (2001) Descriptive physical oceanography. A.A Balkema, LeidenGoogle Scholar
  3. 3.
    Brandt W, Crowley D, Hodder M, Juiniti R, Ohara S, Rushton S (1998) Deepening the search for offshore hydrocarbons. Schlumberger Oilfield Rev 10(1):2–21Google Scholar
  4. 4.
    REN21 (2009) Renewables global status report: update, ParisGoogle Scholar
  5. 5.
    Kharif C, Pelinovsky E, Slunyaev A (2009) Rogue waves in the ocean. Springer, BerlinGoogle Scholar
  6. 6.
    Goda Y (1985) Random seas and design of maritime structures, 2nd edn. World Scientific, SingaporeGoogle Scholar
  7. 7.
    Ochi MK (1998) Ocean waves—the stochastic approach. Cambridge University Press, CambridgeMATHCrossRefGoogle Scholar
  8. 8.
    Sawaragi T (1995) Coastal engineering—waves, beaches, wave-structure interactions. Elsevier, AmsterdamGoogle Scholar
  9. 9.
    Wiegel RL (1964) Oceanographical engineering. Prentice-Hall, LondonGoogle Scholar
  10. 10.
    LeMehaute B (1976) An Introduction to hydrodynamics and water waves. Springer, HeidelbergGoogle Scholar
  11. 11.
    Newman JN (1977) Marine hydrodynamics. MIT Press, CambridgeGoogle Scholar
  12. 12.
    LeBlond PH, Mysak LA (1978) Waves in the ocean. Elsevier, AmsterdamGoogle Scholar
  13. 13.
    Mei CC (1983) The applied dynamics of ocean surface waves. Wiley, New YorkMATHGoogle Scholar
  14. 14.
    Chakrabarti SK (1987) Hydrodynamics of offshore structure. Springer, HeidelbergGoogle Scholar
  15. 15.
    Dean RG, Dalrymple RA (1991) Water wave mechanics for engineers and scientists. World Scientific, SingaporeGoogle Scholar
  16. 16.
    Sorensen RM (1993) Basic wave mechanics: for coastal and ocean engineers. Wiley, New YorkGoogle Scholar
  17. 17.
    Tucker MJ, Pitt EG (2001) Waves in ocean engineering. Elsevier, AmsterdamGoogle Scholar
  18. 18.
    Falnes J (2002) Ocean waves and oscillating systems: linear interactions including wave-energy. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  19. 19.
    Mader CL (2004) Numerical modeling of water waves, 2nd edn. CRC Press, Boca RatonMATHCrossRefGoogle Scholar
  20. 20.
    Mei CC, Stiassnie M, Yue DK-P (2005) Theory and applications of offshore surface waves-part 1: linear aspects. World Scientific, SingaporeGoogle Scholar
  21. 21.
    Mei CC, Stiassnie M, Yue DK-P (2005) Theory and applications of offshore surface waves-part 2: nonlinear aspects. World Scientific, SingaporeGoogle Scholar
  22. 22.
    Brebbia CA, Walker S (1979) Dynamic analysis of offshore structures. Butterworths, LondonGoogle Scholar
  23. 23.
    Barltrop NDP, Adams AJ (1991) Dynamics of fixed marine structures. Butterworth-Heinemann, OxfordGoogle Scholar
  24. 24.
    Lamb H (1993) Hydrodynamics. Cambridge University Press, CambridgeGoogle Scholar
  25. 25.
    Fenton JD (1988) The numerical solution of steady water wave problems. Comput Geosci 14(3):357–368CrossRefGoogle Scholar
  26. 26.
    Newman JN (1990) Numerical solutions of the water-wave dispersion relation. Appl Ocean Res 12(1):14–18CrossRefGoogle Scholar
  27. 27.
    Fenton JD (1999) Numerical methods for nonlinear waves. In: Liu PL-F (ed) Advances in coastal and ocean engineering, vol 5. World Scientific, Singapore, pp 241–324Google Scholar
  28. 28.
    Bai KJ, Choo SM, Chung SK, Kim DY (2005) Numerical solutions for nonlinear free surface flows by finite element methods. Appl Math Comput 163:941–959MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Toffolia A, Onorato M, Bitner-Gregersena E, Osborne AR, Babanin AV (2008) Surface gravity waves from direct numerical simulations of the Euler Equations: a comparison with second-order theory. Ocean Eng 35:367–379CrossRefGoogle Scholar
  30. 30.
    Xi-zeng Z, Zhao-chen S, Shu-xiu L, Chang-hong H (2009) A numerical method for nonlinear water waves. J. Hydrodynamics 21(3):401–407CrossRefGoogle Scholar
  31. 31.
    Xu L, Guyenne P (2009) Numerical simulation of three-dimensional nonlinear water waves. J Comput Phys 228:8446–8466MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Skjelbreia L (1959) Gravity waves, stokes’ third order approximation; tables of functions. Engineering Foundation Council of Wave Research, BerkeleyGoogle Scholar
  33. 33.
    Laitone EV (1962) Limiting conditions for cnoidal and Stokes waves. J Geophys Res 67(4):1555–1564MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Hsu JRC, Tsuchiya Y, Silvester (1979) Third-order approximation to short-crested waves. J Fluid Mech 90(1):179–196MATHCrossRefGoogle Scholar
  35. 35.
    Morison JR, O’Brien MP, Johnson JW, Schaaf SA (1950) The force exerted by surface wave on piles. Pet Trans, AIME 189:149–154Google Scholar
  36. 36.
    Korteweg DJ, de Vries G (1895) On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Phil Mag Ser 5(39):422–443CrossRefGoogle Scholar
  37. 37.
    Fenton JD (1979) A high-order cnoidal wave theory. J Fluid Mech 94(1):129–161MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    Karabulut EA (2000) Higher-order approximation of Cnoidal-wave Theory. J Appl Mech Tech Phys 41(1):84–94MathSciNetCrossRefGoogle Scholar
  39. 39.
    Sander J, Hutter K (1991) On the development of the theory of the solitary wave, a historical essay. Acta Mech 86:111–152MathSciNetMATHCrossRefGoogle Scholar
  40. 40.
    Craik ADD (2004) The origins of water wave theory. Annu Rev Fluid Mech 36:1–28MathSciNetCrossRefGoogle Scholar
  41. 41.
    Kinsman B (1965) Wind waves, their generation and propagation on the ocean surface. Prentice-Hall, Englewood CliffsGoogle Scholar
  42. 42.
    Longuet-Higgins MS (1957) The statistical analysis of a random, moving surface. Phil Trans Roy Soc Lond A 249:321–387MathSciNetMATHCrossRefGoogle Scholar
  43. 43.
    Longuet-Higgins MS (1984) Statistical properties of wave groups in a random sea state. Phil Trans Roy Soc Lond A 312:219–250MathSciNetMATHCrossRefGoogle Scholar
  44. 44.
    Ochi MK (1982) Stochastic analysis and probabilistic prediction of random seas. Adv Hydrosci 13:217–375Google Scholar
  45. 45.
    Goda Y (1990) Random waves and spectra. In: Herbich JB (ed) Handbook of coastal and ocean engineering, vol 1. Gulf Publishing, Houston, pp 175–212Google Scholar
  46. 46.
    Memos C, Tzanis K, Zographou K (2002) Stochastic description of sea waves. J Hydraulic Res 40(3):265–274CrossRefGoogle Scholar
  47. 47.
    Pierson WJ, Moskowitz L (1964) A proposed spectral form for fully developed wind seas based on the similarity theory of S. A. Kitaigorodskii. J Geophys Res 69(24):5181–5190CrossRefGoogle Scholar
  48. 48.
    Hasselmann K, Barnett TP, Bouws E, Carlson H, Cartwright DE, Enke K, Ewing JA, Gienapp H, Hasselmann DE, Kruseman P, Meerburg A, Müeller P, Olbers DJ, Richter K, Sell W, Walden H (1973) Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Dtsch Hydrogr Z A8(12):1–95Google Scholar
  49. 49.
    Komen GJ, Hasselmann K, Hasselmann K (1984) On the existence of a fully developed wind-sea spectrum. J Phys Oceanogr 14(8):1271–1285CrossRefGoogle Scholar
  50. 50.
    Battjes JA, Zitman TJ, Holthuijsen LH (1987) Reanalysis of the spectra observed in JONSWAP. J Phys Oceanogr 17(8):1288–1295CrossRefGoogle Scholar
  51. 51.
    DNV-RP-C205 (2007) Environmental conditions and environmental loads. recommended practice. Det Norske Veritas, HøvikGoogle Scholar
  52. 52.
    Le Méhauté B, Hanes DM (1990) Ocean engineering science, Part 1. Wiley, New YorkGoogle Scholar
  53. 53.
    Ochi MK, Hubble EN (1976) On six-parameter wave spectra. In: Proceedings of the 15th Coastal Engineering Conference, vol 1, pp 301–328Google Scholar
  54. 54.
    Torsethaugen K (1996) Model for a doubly peaked wave spectrum. SINTEF report STF22 A96204, TrondheimGoogle Scholar
  55. 55.
    Torsethaugen K, Haver S (2004) Simplified double peak spectral model for ocean waves. In: Proceedings of 14th international offshore and polar engineering conference. ISOPE-2004, vol 3, pp 76–84Google Scholar
  56. 56.
    Soares CG, Nolasco MC (1992) Spectral modelling of sea states with multiple wave systems. J Offshore Mech Arct Eng 114(4):278–284CrossRefGoogle Scholar
  57. 57.
    Longuet-Higgins MS (1962) The directional spectrum of ocean waves, and processes of wave generation. Proc Roy Soc Lond A265:286–315MathSciNetGoogle Scholar
  58. 58.
    Borgman LE (1969) Directional spectra models for design. Proc Offshore Technol Conf OTC1069:721–746Google Scholar
  59. 59.
    Hasselmann DE, Dunckel M, Ewing JA (1980) Directional wave spectra observed during JONSWAP 1973. J Phys Oceanogr 10(8):1264–1280CrossRefGoogle Scholar
  60. 60.
    Donelan MA, Hamilton J, Hui WH (1985) Directional spectra of wind-generated waves. Phil Trans Roy Soc Lond A 315(1534):509–562CrossRefGoogle Scholar
  61. 61.
    Kumar VS, Deo MC, Anand NM, Chandramohan P (1999) Estimation of wave directional spreading in shallow water. Ocean Eng 26:83–98CrossRefGoogle Scholar
  62. 62.
    Wen SC, Guo PF, Zhang DC (1993) Analytically derived wind-wave directional spectrum: Part 1. derivation of the spectrum. J Oceanogr 49:131–147CrossRefGoogle Scholar
  63. 63.
    Chakrabarti SK (1990) Nonlinear methods in offshore engineering. Elsevier, AmsterdamGoogle Scholar
  64. 64.
    Peregrine DH (1976) Interaction of water waves and currents. Advan Appl Mech 16:9–117MATHCrossRefGoogle Scholar
  65. 65.
    Longuet-Higgins MS, Stewart RW (1961) The changes of amplitude of short gravity waves on steady non-uniform currents. J Fluid Mech 10:529–549MathSciNetMATHCrossRefGoogle Scholar
  66. 66.
    Thomas GP (1981) Wave-current interactions: an experimental and numerical study, Part 1, Linear waves. J Fluid Mech 110:457–474CrossRefGoogle Scholar
  67. 67.
    Ismail NM (1983) Effects of wave-current interaction on the design of marine structures. Proc Offshore Technol Conf OTC4615:307–316Google Scholar
  68. 68.
    Ismail NM (1984) Wave-current models for design of marine structures. J Waterw Port Coastal Ocean Eng 110(4):432–447CrossRefGoogle Scholar
  69. 69.
    Srokosz MA (1987) Models of wave-current interaction. Advances in underwater technology, ocean science and offshore engineering, vol 12: modelling the offshore environment. Graham and Trotman Ltd., London, pp 313–325Google Scholar
  70. 70.
    Baddour RE, Song S (1990) On the interaction between waves and currents. Ocean Eng 17(1–2):1–21Google Scholar
  71. 71.
    Hedges TS (1987) Combinations of waves and currents: an introduction. Proc Inst Civ Eng 82:567–585Google Scholar
  72. 72.
    Huang NE, Chen DT, Tung CC, Smith JR (1972) Interactions between steady non-uniform currents and gravity waves with applications for current measurements. J Phys Oceanogr 2:420–431CrossRefGoogle Scholar
  73. 73.
    Tung CC, Huang NE (1973) Combined effects of current and waves on fluid force. Ocean Eng 2:183–193CrossRefGoogle Scholar
  74. 74.
    Tayfun MA, Dalrymple RA, Yang CY (1976) Random wave-current interactions in water of varying depth. Ocean Eng 3:403–420CrossRefGoogle Scholar
  75. 75.
    Hedges TS, Anastasion K, Gabriel D (1985) Interaction of random waves and currents. J Waterw Port Coastal Ocean Eng 111(2):275–288CrossRefGoogle Scholar
  76. 76.
    Burrows R, Hedges TS (1985) The influence of currents on ocean wave climates. Coastal Eng 9:247–260CrossRefGoogle Scholar
  77. 77.
    Li YC (1990) Wave-current interaction. In: Herbich JB (ed) Handbook of coastal and ocean engineering, vol 1. Gulf Publishing, Houston, pp 704–726Google Scholar
  78. 78.
    Masson D (1996) A case study of wave–current interaction in a strong tidal current. J Phys Oceanogr 26:359–372CrossRefGoogle Scholar
  79. 79.
    Bretherton FP, Garrett CJR (1969) Wave trains in inhomogeneous moving media. Proc Roy Soc Lond A302:529–554Google Scholar
  80. 80.
    Bouwse E (1978). Wind and wave climate in the Netherlands sectors of the North Sea between 53o and 54o north latitude. Report W.R. 78-9, Koninklijk Netherlands Meterologisch Inst., De BuildGoogle Scholar
  81. 81.
    Haver S (1987) On the joint distribution of heights and periods of sea waves. Ocean Eng 14(5):359–376CrossRefGoogle Scholar
  82. 82.
    Ferreira JA, Soares CG (2002) Modelling bivariate distributions of significant wave height and mean wave period. Appl Ocean Res 24:31–45CrossRefGoogle Scholar
  83. 83.
    Capitao R, Burrows R (1995) Wave predictions based on scatter diagram data. A review. Adv Eng Softw 23:37–47CrossRefGoogle Scholar
  84. 84.
    Mathisen J, Bitner-Gregerse E (1990) Joint distributions for significant wave height and wave zero-up-crossing period. Appl Ocean Res 12(2):93–103CrossRefGoogle Scholar
  85. 85.
    Kumar VS, Deo MC (2004) Design wave estimation considering directional distribution of waves. Ocean Eng 31:2343CrossRefGoogle Scholar
  86. 86.
    Battjes JA (1972) Long-term wave height distributions at seven stations around the British Isles. Ocean Dyn 25(4):179–189Google Scholar
  87. 87.
    Haver S (1985) Wave climate off northern Norway. Appl Ocean Res 7:85–92CrossRefGoogle Scholar
  88. 88.
    Nordenstrom N (1969) Long term distribution of wave heights and periods. DNV Rep. No. 69-21-S, OsloGoogle Scholar
  89. 89.
    Bitner-Gregersen EM (2005) Joint probabilistic description for combined seas. In: Proceedings of OMAE 2005 conference of OMAE 2005-67382, Halkidiki, GreeceGoogle Scholar
  90. 90.
    Nagai S (1973) Wave forces on structures. Adv Hydrosci 9:253–324Google Scholar
  91. 91.
    Sarpkaya T, Isaacson M (1981) Mechanics of wave forces on offshore structures. Van Nostrand Reinhold, New YorkGoogle Scholar
  92. 92.
    Clauss G, Lehmann E, Ostergaard C (1992) Offshore structures, vol. 1, Conceptual design and hydromechanics. Springer, LondonGoogle Scholar
  93. 93.
    API RP 2A WSD (1993) Recommended practice for planning, designing and constructing fixed offshore platforms, working stress design (20 edn). API, DallasGoogle Scholar
  94. 94.
    Gudmestad OT, Moe G (1996) Hydrodynamic coefficients for calculation of hydrodynamic loads on offshore truss structures. Mar Struct 9:745–758CrossRefGoogle Scholar
  95. 95.
    Sarpkaya T (1986) Force on a circular cylinder in viscous oscillatory flow at low Keulegan–Carpenter numbers. J Fluid Mech 165:61–71CrossRefGoogle Scholar
  96. 96.
    Haritos N (2007) Introduction to the analysis and design of offshore structures—an overview. EJSE Special Issue Load Struct 7:55–65Google Scholar
  97. 97.
    Havelock TH (1940) The pressure of water waves upon a fixed obstacle. Proc Roy Soc Lond A175(963):409–421Google Scholar
  98. 98.
    MacCamy RC, Fuchs RA (1954) Wave forces on piles: a diffraction theory. Tech. Memo, 69, U.S. Army Corps of Engineers, Beach Erosion Board, Washington DCGoogle Scholar
  99. 99.
    Rahman M, Chakravartty IC (1981) Hydrodynamic loading calculations for offshore structures. SIAM J Appl Math 41(3):445–458MathSciNetMATHCrossRefGoogle Scholar
  100. 100.
    Rahman M, Chehil DS (1982) Second-order wave force on a large cylinder. Acta Mech 44:127–136CrossRefGoogle Scholar
  101. 101.
    Taylor RE, Kernot MP (1999) On second order wave loading and response in irregular seas. In: Liu, PL-F (ed) Advances in coastal and ocean engineering. vol 5. World Scientific, Singapore, pp 155–212Google Scholar
  102. 102.
    Abramowitz M, Stegun IA (eds) (1972) Handbook of mathematical functions with formulas, graphs and mathematical tables. Dover, New YorkMATHGoogle Scholar
  103. 103.
    Atalik TS, Utku S (1976) Stochastic linearization of multi-degree-of-freedom non-linear systems. Earthq Eng Struct Dyn 4:411–420CrossRefGoogle Scholar
  104. 104.
    Roberts JB, Spanos PD (1990) Random vibration and statistical linearization. Wiley, ChichesterMATHGoogle Scholar
  105. 105.
    Borgman LE (1967) Random hydrodynamic forces on objects. Ann Math Stat 38(1):37–51MathSciNetMATHCrossRefGoogle Scholar
  106. 106.
    Gudmestad OT, Connor JJ (1983) Linearization methods and the influence of current on the nonlinear hydrodynamic drag force. Appl Ocean Res 5(4):184–194CrossRefGoogle Scholar
  107. 107.
    Langley RS (1984) The linearisation of three-dimensional drag force in random seas with current. Appl Ocean Res 6(3):126–131CrossRefGoogle Scholar
  108. 108.
    Leira BJ (1987) Multidimensional stochastic linearisation of drag forces. Appl Ocean Res 9(3):150–162CrossRefGoogle Scholar
  109. 109.
    Chen Y-H, Lin F-M (1989) General drag-force linearization for nonlinear analysis of marine risers. Ocean Eng 16(3):265–280CrossRefGoogle Scholar
  110. 110.
    Karadeniz H (1993) Wave-current and fluid-structure interaction effects on the stochastic analysis of offshore structures. Int J Offshore Polar Eng 3(2):107–114Google Scholar
  111. 111.
    Kareem A, Hsieh CC, Tognarelli MA (1998) Frequency-domain analysis of offshore platform in non-Gaussian seas. J. Eng. Mech. 124(6):668–683CrossRefGoogle Scholar
  112. 112.
    Hartnett M, Mullarkey T (1999) Statistical equivalent linearisation of drag forces on immersed slender members. Adv Eng Softw 30:657–662CrossRefGoogle Scholar
  113. 113.
    Wolfram J (1999) On alternative approaches to linearization and Morison’s equation for wave forces. Proc Roy Soc Lond A455:2957–2974MathSciNetGoogle Scholar
  114. 114.
    Karadeniz H (1992) Stochastic analysis of offshore structures under wave-current and fluid-structure interactions. In: Proceedings of 11th international conference on offshore mechanics and arctic engineering, OMAE, 1A, pp 241–248Google Scholar
  115. 115.
    Karadeniz H (1995) A stochastic analysis approach for the calculation of hydrodynamic damping. In: Proceedings of 14th international conference on offshore mechanics and arctic engineering, OMAE, 1B, pp 89–94Google Scholar
  116. 116.
    Karadeniz H (1999) Spectral analysis of offshore structures under combined wave and earthquake loadings. In: Proceedings of 9th international offshore and polar engineering conference, ISOPE, vol 4, pp 504–511Google Scholar
  117. 117.
    Karadeniz H (2009) SAPOS-spectral analysis program of structures. Report, Structural Mechanics Division, Faculty of Civil Engineering and Geosciences, Delft University of Technology, DelftGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Halil Karadeniz
    • 1
  • Mehmet Polat Saka
    • 2
  • Vedat Togan
    • 3
  1. 1.Faculty of Civil Engineering and GeosciencesDelft University of TechnologyDelftThe Netherlands
  2. 2.Depeartment of Engineering SciencesMiddle East Technical UniversityAnkaraTurkey
  3. 3.Department of Civil EngineeringKaradeniz Technical UniversityTrabzonTurkey

Personalised recommendations