Skip to main content

Finite Element Analysis of Space Frame Structures

  • Chapter
  • First Online:
Stochastic Analysis of Offshore Steel Structures

Part of the book series: Springer Series in Reliability Engineering ((RELIABILITY))

Abstract

This chapter is devoted to the mechanics of space frame structures and presents necessary formulations for the finite element analysis of space frames. It contains eight sections. Section 1.1 is introduction which summarizes briefly the beam theories in general. Section 1.2 presents deformations, equilibrium equations and rotations, differential equations and solutions, stiffness and mass matrices, consistent load vectors of three-dimensional (3D) Timoshenko beams in general. It explains also the coordinate systems and transformations of 3D beams used in the FEA. Section 1.3 is devoted to member releases and formulation of partly connected members which are represented by spring-beam elements. Section 1.4 explains the formulation of eccentrically connected members. Section 1.5 presents formulations of an interface beam element to take into account soil–beam interactions in the analysis. It explains also soil deformations under Rayleigh wave propagation and calculation of the exerted forces. Section 1.6 is devoted to the calculation of natural frequencies and mode shapes. Consequently, Sect. 1.7 presents dynamic response analysis. Section 1.8 is devoted to examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rutenbwg A (1979) Plane frame analysis of laterally loaded asymmetric buildings-an uncoupled solution. Comp Struct 10(3):553–555

    Article  Google Scholar 

  2. Wilkinson S, Thambiratnam D (2001) Simplified procedure for seismic analysis of asymmetric buildings. Comp Struct 79(32):2833–2845

    Article  Google Scholar 

  3. Kam TY, Lee FS (1986) Nonlinear analysis of steel plane frames with initial imperfections. Comp Struct 23(4):553–557

    Article  Google Scholar 

  4. Sophianopoulos DS (2003) The effect of joint flexibility on the free elastic vibration characteristics of steel plane frames. J Constr Steel Res 59(8):995–1008

    Article  Google Scholar 

  5. Blandford GE (1988) Static analysis of flexibly connected thin-walled plane frames. Comp Struct 28(1):105–113

    Article  MATH  Google Scholar 

  6. Dissanayake UI, Burgess IW, Davison JB (2000) Modelling of plane composite frames in unpropped construction. Eng Struct 22(4):287–303

    Article  Google Scholar 

  7. Sekulovic M, Salatic R, Nefovska M (2002) Dynamic analysis of steel frames with flexible connections. Comp Struct 80(11):935–955

    Article  Google Scholar 

  8. Lui EM, Chen WF (1986) Analysis and behaviour of flexibly-jointed frames. Eng Struct 8(2):107–118

    Article  Google Scholar 

  9. Lee HP, Ng TY (1994) In-plane vibration of planar frame structures. J Sound Vib 172(3):420–427

    Article  MATH  Google Scholar 

  10. Labuschagne A, van Rensburg NFJ, van der Merwe AJ (2009) Comparison of linear beam theories. J Math Comput Modell 49(1–2):20–30

    Article  MATH  Google Scholar 

  11. The LH (2004) Beam element verification for 3D elastic steel frame analysis. Comput Struct 82(15–16):1167–1179

    Google Scholar 

  12. Kim SE, Kim Y, Choi SH (2001) Nonlinear analysis of 3-D steel frames. Thin Walled Struct 39(6):445–461

    Article  Google Scholar 

  13. Kumar P, Nukala VV, White DW (2004) A mixed finite element for three-dimensional nonlinear analysis of steel frames. Comput Meth Appl Mech Eng 193(23–26):2507–2545

    MATH  Google Scholar 

  14. Yang YB (1993) Recent researches on buckling of framed structures and curved beams. J Constr Steel Res 26(2–3):193–210

    Article  Google Scholar 

  15. Palaninathan R, Chandrasekharan PS (1985) Curved beam element stiffness matrix formulation. Comput Struct 21(4):663–669

    Article  MATH  Google Scholar 

  16. Choit J, Lim J (1995) General curved beam elements based on the assumed strain fields. Comput Struct 55(3):379–386

    Article  Google Scholar 

  17. Yang SY, Sin HC (1995) Curvature-based beam elements for the analysis of Timoshenko and shear-deformable curved beams. J Sound Vib 187(4):569–584

    Article  MATH  Google Scholar 

  18. Culver CG, Oestel DJ (1969) Natural frequencies of multispan curved beams. J Sound Vib 10(3):380–389

    Article  Google Scholar 

  19. Yoona KY, Parkb NH, Choic YJ, Kangd YJ (2006) Natural frequencies of thin-walled curved beams. Finite Elem Anal Des 42(13):1176–1186

    Article  Google Scholar 

  20. Dym CL, Shames IH (1973) Solid mechanics: a variational approach. McGraw·Hill, New York, pp 175–213

    Google Scholar 

  21. Boresi AP, Schmidt RJ (2003) Advanced mechanics of materials, 6th edn. Wiley, New York

    Google Scholar 

  22. Case J, Chilver L, Ross CTF (1999) Strength of materials and structures, 4th edn. Elsevier, Amsterdam

    Google Scholar 

  23. Love AEH (1963) A treatise on the mathematical theory of elasticity, 4th edn. Cambridge University Press, New York

    Google Scholar 

  24. Timoshenko SP, Goodier JN (1969) Theory of elasticity, 3rd edn. McGraw-Hill, NewYork

    Google Scholar 

  25. Ruge P, Birk C (2007) A comparison of infinite Timoshenko and Euler-Bernoulli beam models on Winkler foundation in the frequency- and time-domain. J Sound Vib 304(3–5):932–947

    Article  Google Scholar 

  26. Ganesan N, Engels RC (1992) Hierarchical Bernoulli-Euler beam finite elements. Comput Struct 43(2):297–304

    Article  MATH  Google Scholar 

  27. Timoshenko SP (1921) On the correction for shear of the differential equation for transverse vibrations of prismatic bars. Philos Mag 41(245):744–746

    Article  Google Scholar 

  28. Timoshenko SP (1922) On the transverse vibrations of bars of uniform cross-section. Philos Mag 43(253):125–131

    Article  Google Scholar 

  29. Wang CM (1995) Timoshenko beam-bending solutions in terms of Euler–Bernoulli solutions. J Eng Mech 121(6):763–765

    Article  Google Scholar 

  30. Davis R, Henshell RD, Warburton GB (1972) A Timoshenko beam element. J Sound Vib 22(4):475–487

    Article  Google Scholar 

  31. Bakr EM, Shabana AA (1987) Timoshenko beams and flexible multibody system dynamics. J Sound Vib 116(1):89–107

    Article  MATH  Google Scholar 

  32. Thomas DL, Wilson JM, Wilson RR (1973) Timoshenko beam finite elements. J Sound Vib 31(3):315–330

    Article  MATH  Google Scholar 

  33. Horr AM, Schmidt LC (1995) Closed-form solution for the Timoshenko beam theory using a computer-based mathematical package. Comput Struct 55(3):405–412

    Article  MATH  Google Scholar 

  34. Bazoune A, Khulief YA, Stephen NG (2003) Shape functions of three-dimensional Timoshenko beam element. J Sound Vib 259(2):473–480

    Article  Google Scholar 

  35. Lou P, Dai GL, Zeng QY (2006) Finite-element analysis for a Timoshenko beam subjected to a moving mass. Proc Inst Mech Eng Part C J Mech Eng Sci 220(5):669–678

    Article  Google Scholar 

  36. Yu W, Hodges DH (2005) Generalized Timoshenko theory of the variational asymptotic beam sectional analysis. J Am Helicopter Soc 50(1):46–55

    Article  Google Scholar 

  37. Mikkola A, Dmitrochenko O, Matikainen M (2009) Inclusion of transverse shear deformation in a beam element based on the absolute nodal coordinate formulation. J Comput Nonlinear Dyn 4(1):011004–011012

    Article  Google Scholar 

  38. Ghali A, Neville AM, Brown TG (2009) Structural analysis: a unified classical and matrix approach, 6th edn. Spon, London

    Google Scholar 

  39. McCormac CJ (2007) Structural analysis: using classical and matrix methods, 4th edn. Wiley, Hoboken

    Google Scholar 

  40. Kurrer KE (2008) The history of the theory of structures: from arch analysis to computational mechanics. Ernst & Sohn, Berlin

    Google Scholar 

  41. Przemieniecki JS (1968) Theory of matrix structural analysis. McGraw-Hill, New York

    MATH  Google Scholar 

  42. Zienkiewicz OC, Taylor RL (2005) The finite element method for solid and structural mechanics, 6th edn. Elsevier Butterworth-Heinemann, Oxford

    MATH  Google Scholar 

  43. Crisfield MA (1986) Finite elements and solution procedures for structural analysis: linear analysis, vol 1. Pineridge Press, Swansea

    Google Scholar 

  44. Wunderlich W, Pilkey WD (2003) Mechanics of structures: variational and computational methods, 2nd edn. CRC Press, Boca Raton

    MATH  Google Scholar 

  45. Slivker VI (2007) Mechanics of structural elements: theory and applications. Springer, Berlin

    Book  Google Scholar 

  46. Brenner SC, Scott LR (2008) The mathematical theory of finite element methods, 3rd edn. Springer, New York

    Book  MATH  Google Scholar 

  47. Chen Z (2005) Finite element methods and their applications. Springer, Berlin

    MATH  Google Scholar 

  48. Ross CTF (1999) Advanced finite element methods. Horwood, Chichester

    Google Scholar 

  49. Bathe KJ, Wilson EL (1976) Numerical methods in finite element analysis. Prentice-Hall, Englewood

    MATH  Google Scholar 

  50. Omid BN, Rankin CC (1991) Finite rotation analysis and consistent linearization using projectors. Comput Meth Appl Mech Eng 93(3):353–384

    Article  MATH  Google Scholar 

  51. Ibrahimbegovic A (1997) On the choice of finite rotation parameters. Comput Meth Appl Mech Eng 149:49–71

    Article  MathSciNet  MATH  Google Scholar 

  52. Li M (1998) The finite deformation theory for beam, plate and shell Part III. The three-dimensional beam theory and the FE formulation. Comput Meth Appl Mech Eng 162(1–4):287–300

    Article  MATH  Google Scholar 

  53. Kim MY, Chang SP, Park HG (2001) Spatial postbuckling analysis of nonsymmetric thin-walled frames. I: theoretical considerations based on semitangential property. J Eng Mech 127(8):769–778

    Article  Google Scholar 

  54. Boresi AP, Chong KP (2000) Elasticity in engineering mechanics. Wiley, New York

    Google Scholar 

  55. Schramm U, Kitis L, Kang W, Pilkey WD (1994) On the shear deformation coefficient in beam theory. Finite Elem Anal Des 16:141–162

    Article  MATH  Google Scholar 

  56. Pilkey WD (2002) Analysis and design of elastic beams, computational methods. Wiley, New York

    Book  Google Scholar 

  57. Clough RW, Penzien J (1993) Dynamics of structures, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  58. Bishop RED, Gladwell GML, Michaelson S (1965) The matrix analysis of vibration. Cambridge University Press, London

    MATH  Google Scholar 

  59. Meirovitch L (1967) Analytical methods in vibrations. Collier-McMillan Limited, London

    MATH  Google Scholar 

  60. Woodhouse J (1998) Linear damping models for structural vibration. J Sound Vib 215(3):547–569

    Article  MATH  Google Scholar 

  61. Liang Z, Lee GC (1991) Representation of damping matrix. J Eng Mech 117(5):1005–1020

    Article  Google Scholar 

  62. Hinton E, Rock T, Zienkiewicz OC (1976) A note on mass lumping and related processes. J Earthq Eng Struct Dyn 4:245–249

    Article  Google Scholar 

  63. Barltrop NDP, Adams AJ (1991) Dynamics of fixed marine structures, 3rd edn. Butterworth-Heinemann Ltd., Oxford, pp 41–48

    Google Scholar 

  64. Chen B, Hu Y, Tan M (1990) Local joint flexibility of tubular joints of offshore structures. Mar Struct 3(3):177–197

    Article  Google Scholar 

  65. Bouwkamp JG, Hollings JP, Malson BF, Row DG (1980) Effect of joint flexibility on the response of offshore structures. Proceedings of the offshore technology conference, Texas, USA

    Google Scholar 

  66. Fessler H, Mockford PB, Webster JJ (1986) Parametric equations for the flexibility matrices of single brace tubular joint in offshore structures. Proc Inst Civ Eng Part 2 81:659–673

    Article  Google Scholar 

  67. Fessler H, Mockford PB, Webster JJ (1986) Parametric equations for the flexibility matrices of multi-brace tubular joint in offshore structures. Proc Inst Civ Eng Part 2 81:675–696

    Article  Google Scholar 

  68. Ueda Y, Rashed SMH, Nakacho K (1987) An improved joint model and equations for flexibility of tubular joints. Proceedings of the 6th international symposium offshore Mechanics and Arctic Engineering, Texas, USA

    Google Scholar 

  69. Lee DG, Song YH (1993) Efficient seismic analysis of piping systems with joint deformations. Eng Struct 15(1):2–12

    Article  Google Scholar 

  70. Hu Y, Chen B, Ma J (1993) An equivalent element representing local flexibility of tubular joints in structural analysis of offshore platforms. Comput Struct 47(6):957–969

    Article  Google Scholar 

  71. Chen TY, Zhang HY (1996) Stress analysis of spatial frames with consideration of local flexibility of multiplanar tubular joint. Eng Struct 18(6):465–471

    Article  Google Scholar 

  72. Karadeniz H (1994) An algorithm for member releases and partly connected members in offshore structural analysis. Proceedings of the 13th international conference on Offshore Mechanics and Arctic Engineering, OMAE-94, Texas, USA, vol 1, pp 471–476

    Google Scholar 

  73. Karadeniz H (2010) A calculation model for deteriorated members of 3D frame structures in the static and dynamic analyses. Proceedings of the 29th international conference on Offshore Mechanics and Arctic Engineering, OMAE-2010, Paper No. OMAE2010-20971, Shanghai, China

    Google Scholar 

  74. Baigent AH, Hancock GJ (1982) Structural analysis of assemblages of thin-walled members. Eng Struct 4:207–216

    Article  Google Scholar 

  75. Faruque MO (1986) Mechanics of material interfaces. In: Selvadurai APS, Voyiadjis GS (eds) An axisymmetric interface element for soil-structure interaction problems. Elsevier, Amsterdam

    Google Scholar 

  76. Boulon M, Garnica P, Vermeer PA (1995) Mechanics of geomaterial interfaces. In: Selvadurai APS, Boulon MJ (eds) Soil-structure interaction: FEM computations. Elsevier, Amsterdam

    Google Scholar 

  77. Selvadurai APS (1995) Mechanics of geomaterial interfaces. In: Selvadurai APS, Boulon MJ (eds) Boundary element modeling of geomaterial interfaces. Elsevier, Amsterdam

    Google Scholar 

  78. Karadeniz H (2001) Earthquake analysis of buried structures and pipelines based on Rayleigh wave propagation. Int J Offshore Polar Eng 11(2):133–140

    Google Scholar 

  79. Miranda C, Nair K (1966) Finite beams on elastic foundation. J Struct Eng 92(ST2):131–141

    Google Scholar 

  80. Selvadurai APS (1979) Elastic analysis of soil-foundation interaction. Elsevier, Amsterdam

    Google Scholar 

  81. Ting BY (1982) Finite beams on elastic foundation with restrains. J Struct Eng 108(ST3):611–621

    Google Scholar 

  82. Ting BY, Mockry EF (1984) Beam on elastic foundation finite element. J Struct Eng 110(10):2324–2339

    Article  Google Scholar 

  83. Aydogan M (1995) Stiffness-matrix formulation of beams with shear effect on elastic foundation. J Struct Eng 121(99):1265–1270

    Google Scholar 

  84. Yokoyama T (1991) Vibrations of Timoshenko beam-columns on two-parameter elastic foundations. Earthquake Eng Struct Dyn 20:353–370

    Article  MathSciNet  Google Scholar 

  85. Ishihara K (1996) Soil behaviour in earthquake geotechnics. Oxford University Press, Oxford

    Google Scholar 

  86. Toki K, Sato T, Miura F (1981) Separation and sliding between soil and structure during strong ground motion. Earthquake Eng Struct Dyn 9:263–277

    Article  Google Scholar 

  87. Lay T, Wallace TC (1995) Modern global seismology. Academic Press, London

    Google Scholar 

  88. Takeuchi H, Saito M (1972) Seismic surface waves. In: Bold BA (ed) Methods in computational physics, seismology: surface waves and earth oscillations. Academic Press, London

    Google Scholar 

  89. Achenbach JD (1980) Wave propagation in elastic solids. North-Holland, Amsterdam

    Google Scholar 

  90. Graff KF (1975) Wave motion in elastic solids. Oxford University Press, London

    MATH  Google Scholar 

  91. Makris N (1994) Soil-pile interaction during the passage of Rayleigh waves: an analytical solution. Earthq Eng Struct Dyn 23:153–167

    Article  Google Scholar 

  92. Wilkinson JH (1965) The algebraic eigenvalue problem. Clarendon Press, Oxford

    MATH  Google Scholar 

  93. Jennings A (1977) Matrix computation for engineers and scientists. Wiley, London

    MATH  Google Scholar 

  94. Parlett BN (1980) The symmetric eigenvalue problem. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  95. Bathe KJ, Wilson EL (1976) Finite element procedures in engineering analysis. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  96. Hudges TJR (1987) The finite element method, linear static and dynamic finite element analysis. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  97. Qian Y, Dhatt G (1995) An accelerated subspace method for generalized eigenproblems. Comput Struct 54(6):1127–1134

    Article  MathSciNet  MATH  Google Scholar 

  98. Karadeniz H (1996) An accelerated solution algorithm for the eigenvalue problem in the offshore structural analysis. Proc of ISOPE-96, 26–31 May, Los-Angeles, USA

    Google Scholar 

  99. Yamazaki F, Shinozuka M, Dasgupta G (1988) Neumann expansion for stochastic finite element analysis. J Eng Mech 114(8):1335–1354

    Article  Google Scholar 

  100. Dokainish MA, Subraraj K (1989) A survey of direct time-integration methods in computational structural dynamics-I: explicit methods. Comput Stuct 32(6):1371–1386

    Article  MATH  Google Scholar 

  101. Subraraj K, Dokainish MA (1989) A survey of direct time-integration methods in computational structural dynamics-II: implicit methods. Comput Stuct 32(6):1387–1401

    Article  Google Scholar 

  102. Biggs JM (1964) Introduction to structural dynamics. McGraw-Hill, New York

    Google Scholar 

  103. Humar JL (2002) Dynamics of structures, 2nd edn. Swets & Zeitlinger B.V., Lisse

    MATH  Google Scholar 

  104. Karadeniz H (2009) SAPOS, spectral analysis program of structures. Report, Structural Mechanics Division, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, The Netherlands

    Google Scholar 

  105. Young WC, Budynas RG (2002) Roark’s formulas for stress and strain, 7th edn. McGraw-Hill, New York

    Google Scholar 

Download references

Acknowledgments

With thanks to ASME for kindly granting permission for the reuse of materials printed in OMAE-2010 [73] as adopted in this chapter in Sect. 1.3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Halil Karadeniz .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Karadeniz, H., Saka, M.P., Togan, V. (2013). Finite Element Analysis of Space Frame Structures. In: Stochastic Analysis of Offshore Steel Structures. Springer Series in Reliability Engineering. Springer, London. https://doi.org/10.1007/978-1-84996-190-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-190-5_1

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-189-9

  • Online ISBN: 978-1-84996-190-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics