Skip to main content

Inherited Myocardial Diseases

  • Chapter
  • First Online:
Book cover Heart Failure in Clinical Practice

Abstract

In the last classification of cardiomyopathies (CM) presented by the European Society of Cardiology, CM are defined as myocardial disorders in which the heart muscle is structurally and functionally abnormal, in the absence of sufficient coronary artery disease, hypertension, valvular disease, and congenital heart disease to cause the observed myocardial abnormality. CM are then grouped into specific morphological and functional phenotypes, and each phenotype is subclassified into familial and nonfamilial forms (Fig. 2.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Elliott P, Andersson B, Arbustini E, et al. Classification of the cardiomyopathies: a position statement from the European society of cardiology working group on myocardial and pericardial diseases. Eur Heart J. 2008;29(2):270-276.

    Article  PubMed  Google Scholar 

  2. Dickstein K, Cohen-Solal A, Filippatos G, et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2008: the Task Force for the diagnosis and treatment of acute and chronic heart failure 2008 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association of the ESC (HFA) and endorsed by the European Society of Intensive Care Medicine (ESICM). Eur J Heart Fail. 2008;10(10):933-989.

    Article  PubMed  Google Scholar 

  3. Harris KM, Spirito P, Maron MS, et al. Prevalence, clinical profile, and significance of left ventricular remodeling in the end-stage phase of hypertrophic cardiomyopathy. Circulation. 2006;114(3):216-225.

    Article  PubMed  Google Scholar 

  4. Richardson P, McKenna W, Bristow M, et al. Report of the 1995 World Health Organization/International Society and Federation of Cardiology task force on the definition and classification of cardiomyopathies. Circulation. 1996;93:841-842.

    Article  PubMed  CAS  Google Scholar 

  5. Maron BJ, McKenna WJ, Danielson GK, et al.; Task Force on Clinical Expert Consensus Documents. American College of Cardiology; Committee for Practice Guidelines. European Society of Cardiology. American College of Cardiology/European Society of Cardiology clinical expert consensus document on hypertrophic cardiomyopathy. A report of the American College of Cardiology Foundation Task Force on Clinical Expert Consensus Documents and the European Society of Cardiology Committee for Practice Guidelines. J Am Coll Cardiol. 2003;42(9):1687-1713.

    Google Scholar 

  6. Maron BJ, Towbin JA, Thiene G, et al. Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation. 2006;113(14):1807-1816.

    Article  PubMed  Google Scholar 

  7. Elliott P, McKenna WJ. Hypertrophic cardiomyopathy. Lancet. 2004;363:1881-1891.

    Article  PubMed  CAS  Google Scholar 

  8. Morita H, Rehm HL, Menesses A, et al. Shared genetic causes of cardiac hypertrophy in children and adults. N Engl J Med. 2008;358(18):1899-1908.

    Article  PubMed  CAS  Google Scholar 

  9. Seidman JG, Seidman C. The genetic basis for cardiomyopathy: from mutation identification to mechanistic paradigms. Cell. 2001;104:557-567.

    Article  PubMed  CAS  Google Scholar 

  10. Richard P, Charron P, Carrier L, et al. Hypertrophic cardiomyopathy: distribution of disease genes, spectrum of mutations, and implications for a molecular diagnosis strategy. Circulation. 2003;107:2227-2232.

    Article  PubMed  Google Scholar 

  11. Sanbe A, Nelson D, Gulick J, et al. In vivo analysis of an essential myosin light chain mutation linked to familial hypertrofic cardiomyopathy. Circ Res. 2000;87:296-302.

    Article  PubMed  CAS  Google Scholar 

  12. Sachdev B, Takenaka T, Teraguchi H, et al. Prevalence of Anderson-Fabry disease in male patients with late onset hypertrophic cardiomyopathy. Circulation. 2002;105(12):1407-1411.

    Article  PubMed  CAS  Google Scholar 

  13. DiMauro S, Schon EA. Mitochondrial respiratory-chain diseases. N Engl J Med. 2003;348(26):2656-2668.

    Article  PubMed  CAS  Google Scholar 

  14. Blair E, Redwood C, Ashrafian H, et al. Mutations in the gamma(2) subunit of AMP-activated protein kinase cause familial hypertrophic cardiomyopathy: evidence for the central role of energy compromise in disease pathogenesis. Hum Mol Genet. 2001;10(11):1215-1220.

    Article  PubMed  CAS  Google Scholar 

  15. Arad M, Maron BJ, Gorham JM, et al. Glycogen storage diseases presenting as hypertrophic cardiomyopathy. N Engl J Med. 2005;352:362-372.

    Article  PubMed  CAS  Google Scholar 

  16. Geier C, Perrot A, Özcerlik C, et al. Mutations in the human muscle LIM protein gene in families with hypertrophic cardiomyopathy. Circulation. 2003;107:1390-1395.

    Article  PubMed  CAS  Google Scholar 

  17. Charron P, Villard E, Sébillon P, et al. Danon’s disease as a cause of hypertrophic cardiomyopathy: a systematic survey. Heart. 2004;90(8):842-846.

    Article  PubMed  CAS  Google Scholar 

  18. Minamisawa S, Sato Y, Tatsuguchi Y, et al. Mutation of the phospholamban promoter associated with hypertrophic cardiomyopathy. Biochem Biophys Res Commun. 2003;304:1-4.

    Article  PubMed  CAS  Google Scholar 

  19. Raymen I, Holden HM, Sellers JR, et al. Structural interpretation of the mutations in the beta-cardiac myosin that have been implicated in familial hypertrophic cardiomyopathy. Proc Natl Acad Sci USA. 1995;92:3864-3868.

    Article  Google Scholar 

  20. Raymen I, Holden HM, Whittaker M, et al. Structure of the actin-myosin complex and its implications for muscle contraction. Science. 1993;261:58-65.

    Article  Google Scholar 

  21. Schiaffino S, Reggiani C. Molecular diversity of myofibrillar proteins: gene regulation and functional significance. Physiol Rev. 1996;76:371-396.

    PubMed  CAS  Google Scholar 

  22. Marian AJ, Wu Y, Lim DS, et al. A transgenic rabbit model for human hypertrophic cardiomyopathy. J Clin Invest. 1999;104:1683-1692.

    Article  PubMed  CAS  Google Scholar 

  23. Geisterfer-Lowrance AA, Christe M, Conner DA, et al. A mouse model of familial hypertrophic cardiomyopathy. Science. 1996;272:731-734.

    Article  PubMed  CAS  Google Scholar 

  24. Yang Q, Sanbe A, Osinska H, Hewett TE, Klevitsky R, Robbins J. A mouse model of myosin binding protein C human familial hypertrophic cardiomyopathy. J Clin Invest. 1998;102(7):1292-1300.

    Article  PubMed  CAS  Google Scholar 

  25. Oberst L, Zhao G, Park JT, Brugada R, et al. Dominant-negative effect of a mutant cardiac troponin T on cardiac structure and function in transgenic mice. J Clin Invest. 1998;102(8):1498-1505.

    Article  PubMed  CAS  Google Scholar 

  26. Tardiff JC, Factor SM, Tompkins BD, et al. A truncated cardiac troponin T molecule in transgenic mice suggests multiple cellular mechanisms for familial hypertrophic cardiomyopathy. J Clin invest. 1998;101:2800-2811.

    Article  PubMed  CAS  Google Scholar 

  27. Redwood CS, Moolman-Smook JC, Watkins H. Properties of mutant contractile proteins that cause hypertrophic cardiomyopathy. Cardiovasc Res. 1999;44(1):20-36.

    Article  PubMed  CAS  Google Scholar 

  28. Watkins H. Genetic clues to disease pathways in hypertrophic and dilated cardiomyopathies. Circulation. 2003;107(10):1344.

    Article  PubMed  Google Scholar 

  29. Gomes AV, Potter JD. Molecular and cellular aspects of troponin cardiomyopathies. Ann N Y Acad Sci. 2004;1015:214-224.

    Article  PubMed  CAS  Google Scholar 

  30. Knollmann BC, Kirchhof P, Sirenko SG, et al. Familial hypertrophic cardiomyopathy-linked mutant troponin T causes stress-induced ventricular tachycardia and Ca2+-dependent action potential remodeling. Circ Res. 2003;92(4):428-436.

    Article  PubMed  CAS  Google Scholar 

  31. Olsson MC, Palmer BM, Stauffer BL, et al. Morphological and functional alterations in ventricular myocytes from male transgenic mice with hypertrophic cardiomyopathy. Circ Res. 2004;94:201-207.

    Article  PubMed  CAS  Google Scholar 

  32. Harris SP, Bartley CR, Hacker TA, et al. Hypertrophic cardiomyopathy in cardiac myosin binding protein-C knockout mice. Circ Res. 2002;90:594-601.

    Article  PubMed  CAS  Google Scholar 

  33. Alpert NR, Mohiddin SA, Tripodi D, et al. Molecular and phenotypic effects of heterozygous, homozygous, and compound heterozygote myosin heavy-chain mutations. Am J Physiol Heart Circ Physiol. 2005;288(3):H1097-H1102.

    Article  PubMed  CAS  Google Scholar 

  34. Nagueh SF, Chen S, Patel R, et al. Evolution of expression of cardiac phenotypes over a 4-year period in the beta-myosin heavy chain-Q403 transgenic rabbit model of human hypertrophic cardiomyopathy. J Mol Cell Cardiol. 2004;36(5):663-673.

    Article  PubMed  CAS  Google Scholar 

  35. Doolan A, Tebo M, Ingles J, et al. Cardiac troponin I mutations in Australian families with hypertrophic cardiomyopathy: clinical, genetic and functional consequences. J Mol Cell Cardiol. 2005;38(2):387-393.

    Article  PubMed  CAS  Google Scholar 

  36. Schwartz K, Carrier L, Guicheney P, Komajda M. Molecular basis of familial cardiomyopathies. Circulation. 1995;91:532-540.

    Article  PubMed  CAS  Google Scholar 

  37. Gomes AV, Liang J, Potter JD. Mutations in human cardiac troponin I that are associated with restrictive cardiomyopathy affect basal ATPase activity and the calcium sensitivity of force development. J Biol Chem. 2005;280(35):30909-30915.

    Article  PubMed  CAS  Google Scholar 

  38. Gomes AV, Harada K. PotterJD. A mutation in the N-terminus of troponin I that is associated with hypertrophic cardiomyopathy affects tha Ca(2+)-sensitivity, phosphorilastion kinetics and proteolytic susceptibility of troponin. J Mol Cell Cardiol. 2005;39:754-765.

    Article  PubMed  CAS  Google Scholar 

  39. Gomes AV, Barnes JA, Harada K, Potter JD. Role of troponin T in disease. Mol Cell Biochem. 2004;263(1–2):115-129.

    Article  PubMed  CAS  Google Scholar 

  40. Gomes AV, Potter JD. Cellular and molecular aspects of familial hypertrophic cardiomyopathy caused by mutations in the cardiac troponin I gene. Mol Cell Biochem. 2004;263(1–2):99-114.

    Article  PubMed  CAS  Google Scholar 

  41. Redwood C, Lohmann K, Bing W, et al. Investigation of a truncated cardiac troponin T that causes familial hypertrophic cardiomyopathy: Ca(2+) regulatory properties of reconstituted thin filaments depend on the ratio of mutant to wild-type protein. Circ Res. 2000;86(11):1146-1152.

    Article  PubMed  CAS  Google Scholar 

  42. Crilley JG, Boehm EA, Blair E, et al. Hypertrophic cardiomyopathy due to sarcomeric gene mutations is characterized by impaired energy metabolism irrespective of the degree of hypertrophy. J Am Coll Cardiol. 2003;41(10):1776-1782.

    Article  PubMed  CAS  Google Scholar 

  43. Marian AJ, Roberts R. The molecular genetic basis for hypetrophic cardiomyopathy. J Mol Cell Cardiol. 2001;33:655-670.

    Article  PubMed  CAS  Google Scholar 

  44. Murphy RT, Mogensen J, McGarry K, et al. Adenosine monophosphate-activated protein kinase disease mimicks hypertrophic cardiomyopathy and Wolff-Parkinson-White syndrome: natural history. J Am Coll Cardiol. 2005;45(6):922-930.

    Article  PubMed  CAS  Google Scholar 

  45. Ashrafian H, Redwood C, Blair E, et al. Hypertrophic cardiomyopathy: a paradigm for myocardial energy depletion. Trends Genet. 2003;19(5):263-268.

    Article  PubMed  CAS  Google Scholar 

  46. Kirschner SE, Becker E, Antognozzi M, et al. Hypertrophic cardiomyopathy-related β-myosin mutations cause highly varable calcium sensitivity with functional imbalances among individual muscle cells. Am J Physiol Heart Circ Physiol. 2005;288:H1242-H1251.

    Article  PubMed  CAS  Google Scholar 

  47. Pfeufer A, Osterziel KJ, Urata H, et al. Angiotensin-converting enzyme and heart chymase gene polymorphisms in hypertrophic cardiomyopathy. Am J Cardiol. 1996;78(3):362-364.

    Article  PubMed  CAS  Google Scholar 

  48. Yoneya K, Okamoto H, Machida M, et al. Angiotensin-converting enzyme gene polymorphism in Japanese patients with hypertrophic cardiomyopathy. Am Heart J. 1995;130(5):1089-1093.

    Article  PubMed  CAS  Google Scholar 

  49. Lechin M, Quiñones MA, Omran A, et al. Angiotensin-I converting enzyme genotypes and left ventricular hypertrophy in patients with hypertrophic cardiomyopathy. Circulation. 1995;92(7):1808-1812.

    Article  PubMed  CAS  Google Scholar 

  50. Tesson F, Dufour C, Moolman JC. The influence of the angiotensin I converting enzyme genotype in familial hypertrophic cardiomyopathy varies with the disease gene mutation. J Mol Cell Cardiol. 1997;29(2):831-838.

    Article  PubMed  CAS  Google Scholar 

  51. Richard P, Charron P, Leclercq C, et al. Homozygotes for a R869G mutation in the beta -myosin heavy chain gene have a severe form of familial hypertrophic cardiomyopathy. J Mol Cell Cardiol. 2000;32(8):1575-1583.

    Article  PubMed  CAS  Google Scholar 

  52. Maron BJ, Spirito P, Green KJ, Wesley YE, Bonow RO, Arce J. Noninvasive assessment of left ventricular diastolic function by pulsed Doppler echocardiography in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol. 1987;10:733-742.

    Article  PubMed  CAS  Google Scholar 

  53. Chikamori T, Dickie S, Poloniecki JD, Myers MJ, Lavender JP, McKenna WJ. Prognostic significance of radionuclide-assessed diastolic dysfunction in hypertrophic cardiomyopathy. Am J Cardiol. 1990;65:478-482.

    Article  PubMed  CAS  Google Scholar 

  54. Bonow RO, Dilsizian V, Rosing DR, et al. Verapamil induced improvement in left ventricular filling and increased exercise tolerance in patients with hypertrophic cardiomyopathy. Short and long-term effects. Circulation. 1985;72:853-864.

    Article  PubMed  CAS  Google Scholar 

  55. Pak PH, Maughan L, Baughman KL, Kass DA. Marked discordance between dynamic and passive diastolic pressure volume relations in idiopathic hypertrophic cardiomyopathy. Circulation. 1996;94(1):52-60.

    Article  PubMed  CAS  Google Scholar 

  56. Glancy DL, O’Brien KP, Gold HK, Epstein SE. Atrial fibrillation in patients with idiopathic hypertrophic subaortic stenosis. Br Heart J. 1970;32(5):652-659.

    Article  PubMed  CAS  Google Scholar 

  57. Fassbach M, Schwartzkopff B. Elevated serum markers for collagen synthesis in patients with hypertrophic cardiomyopathy and diastolic dysfunction. Z Kardiol. 2005;94(5):328-335.

    Article  PubMed  CAS  Google Scholar 

  58. Lombardi R, Betocchi S, Losi MA, et al. Myocardial collagen turnover in hypertrophic cardiomyopathy. Circulation. 2003;108(12):1455-1460.

    Article  PubMed  CAS  Google Scholar 

  59. Mundhenke M, Schwartzkopff B, Stark P, et al. Myocardial collagen type I and impaired left ventricular function under exercise in hypertrophic cardiomyopathy. Thorac Cardiovasc Surg. 2002;50(4):216-222.

    Article  PubMed  CAS  Google Scholar 

  60. Henry WL, Clarke CE, Epstein SE. Asymmetrical septal hypertrophy (ASH): Echocardiographic identification of the pathognomonic anatomic abnormality of IHSS. Circulation. 1973;42:225-233.

    Article  Google Scholar 

  61. Shah PM, Gramiak R, Kramer DH. Ultrasound localization of left ventricular outflow obstruction in hypertrophic obstructive cardiomyopathy. Circulation. 1969;40(1):3-11.

    Article  PubMed  CAS  Google Scholar 

  62. Popp RL, Harrison DC. Ultrasound in the diagnosis and evaluation of therapy of idiopathic hypertrophic subaortic stenosis. Circulation. 1969;40(6):905-914.

    Article  Google Scholar 

  63. Maron BJ, Gottdiener JS, Epstein SE. Patterns and significance of distribution of left ventricular hypertrophy in hypertrophic cardiomyopathy. A wide angle, two dimensional echocardiographic study of 125 patients. Am J Cardiol. 1981;48(3):418-428.

    Article  PubMed  CAS  Google Scholar 

  64. Mogensen J, Kubo T, Duque M, et al. Idiopathic restrictive cardiomyopathy is part of the clinical expression of cardiac troponin I mutations. J Clin Invest. 2003;111(2):209-216.

    PubMed  CAS  Google Scholar 

  65. Betocchi S, Bonow RO, Bacharach SL, et al. Isovolumic relaxation period in hypertrophic cardiomyopathy: assessment by radionuclide angiography. J Am Coll Cardiol. 1986;7(1):74-81.

    Article  PubMed  CAS  Google Scholar 

  66. Bonow RO, Frederick TM, Bacharach SL, et al. Atrial systole and left ventricular filling in hypertrophic cardiomyopathy: effect of verapamil. Am J Cardiol. 1983;51(8):1386-1391.

    Article  PubMed  CAS  Google Scholar 

  67. Betocchi S, Hess OM. LV hypertrophy and diastolic heart failure. Heart Fail Rev. 2000;5(4):333-336.

    Article  PubMed  CAS  Google Scholar 

  68. Ito T, Suwa M, Imai M, Nakamura T, Kitaura Y. Assessment of regional left ventricular filling dynamics using color kinesis in patients with hypertrophic cardiomyopathy. J Am Soc Echocardiogr. 2004;17(2):146-151.

    Article  PubMed  Google Scholar 

  69. McKenna WJ, Stewart JT, Nihoyannopoulos P, et al. Hypertrophic cardiomyopathy without hypertrophy: two families with myocardial disarray in the absence of increased myocardial mass. Br Heart J. 1990;63(5):287-290.

    Article  PubMed  CAS  Google Scholar 

  70. Waller BF, Maron BJ, Morrow AG, et al. Hypertrophic cardiomyopathy mimicking pericardial constriction or myocardial restriction. Am Heart J. 1981;102(4):790-792.

    Article  PubMed  CAS  Google Scholar 

  71. Thaman R, Gimeno JR, Murphy RT, et al. Prevalence and clinical significance of systolic impairment in hypertrophic cardiomyopathy. Heart. 2005;91:920-925.

    Article  PubMed  CAS  Google Scholar 

  72. Thaman R, Gimeno JR, Reith S, et al. Progressive left ventricular remodeling in patients with hypertrophic cardiomyopathy and severe left ventricular hypertrophy. J Am Coll Cardiol. 2004;44:398-405.

    Article  PubMed  Google Scholar 

  73. Sengupta PP, Mehta V, Arora R, et al. Quantification of regional nonuniformity and paradoxical intramural mechanics in hypertrophic cardiomyopathy by high frame rate ultrasound myocardial strain mapping. J Am Soc Echocardiogr. 2005;18(7):737-742.

    Article  PubMed  Google Scholar 

  74. Tabata T, Oki T, Yamada H, et al. Subendocardial motion in hypertrophic cardiomyopathy: assessment from long- and short-axis views by pulsed tissue Doppler imaging. J Am Soc Echocardiogr. 2000;13(2):108-115.

    PubMed  CAS  Google Scholar 

  75. Yamada H, Oki T, Tabata T, et al. Assessment of left ventricular systolic wall motion velocity with pulsed tissue Doppler imaging: comparison with peak dP/dt of the left ventricular pressure curve. J Am Soc Echocardiogr. 1998;11(5):442-449.

    Article  PubMed  CAS  Google Scholar 

  76. Matsumura Y, Elliott PM, Virdee MS, et al. Left ventricular diastolic function assessed using Doppler tissue imaging in patients with hypertrophic cardiomyopathy: relation to symptoms and exercise capacity. Heart. 2002;87(3):247-251.

    Article  PubMed  CAS  Google Scholar 

  77. Nagueh SF, Bachinski LL, Meyer D, et al. Tissue Doppler imaging consistently detects myocardial abnormalities in patients with hypertrophic cardiomyopathy and provides a novel means for an early diagnosis before and independently of hypertrophy. Circulation. 2001;104(2):128-130.

    Article  PubMed  CAS  Google Scholar 

  78. Losi MA, Betocchi S, Aversa M, et al. Dobutamine stress echocardiography in hypertrophic cardiomyopathy. Cardiology. 2003;100(2):93-100.

    Article  PubMed  Google Scholar 

  79. Okeie K, Shimizu M, Yoshio H, et al. Left ventricular systolic dysfunction during exercise and dobutamine stress in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol. 2000;36(3):856-863.

    Article  PubMed  CAS  Google Scholar 

  80. Kawano S, Iida K, Fujieda K, et al. Response to isoproterenol as a prognostic indicator of evolution from hypertrophic cardiomyopathy to a phase resembling dilated cardiomyopathy. J Am Coll Cardiol. 1995;25(3):687-692.

    Article  PubMed  CAS  Google Scholar 

  81. Briguori C, Betocchi S, Manganelli F, et al. Determinants and clinical significance of natriuretic peptides and hypertrophic cardiomyopathy. Eur Heart J. 2001;22(15):1328-1336.

    Article  PubMed  CAS  Google Scholar 

  82. Maron BJ, Tholakanahalli VN, Zenovich AG, et al. Usefulness of B-type natriuretic peptide assay in the assessment of symptomatic state in hypertrophic cardiomyopathy. Circulation. 2004;109(8):984-989.

    Article  PubMed  CAS  Google Scholar 

  83. Noji Y, Shimizu M, Ino H, Higashikata T, et al. Increased circulating matrix metalloproteinase-2 in patients with hypertrophic cardiomyopathy with systolic dysfunction. Circ J. 2004;68(4):355-360.

    Article  PubMed  CAS  Google Scholar 

  84. Zen K, Irie H, Doue T, Takamiya M, et al. Analysis of circulating apoptosis mediators and proinflammatory cytokines in patients with idiopathic hypertrophic cardiomyopathy: comparison between nonobstructive and dilated-phase hypertrophic cardiomyopathy. Int Heart J. 2005;46(2):231-244.

    Article  PubMed  CAS  Google Scholar 

  85. Högye M, Mándi Y, Csanády M, Sepp R, Buzás K. Comparison of circulating levels of interleukin-6 and tumor necrosis factor-alpha in hypertrophic cardiomyopathy and in idiopathic dilated cardiomyopathy. Am J Cardiol. 2004;94(2):249-251.

    Article  PubMed  CAS  Google Scholar 

  86. Maron BJ, Olivotto I, Spirito P, et al. Epidemiology of hypertrophic cardiomyopathy-related death: revisited in a large non-referral-based patient population. Circulation. 2000;102(8):858-864.

    Article  PubMed  CAS  Google Scholar 

  87. Ikeda H, Maki S, Yoshida N, et al. Predictors of death from congestive heart failure in hypertrophic cardiomyopathy. Am J Cardiol. 1999;83(8):1280-1283, A9.

    Google Scholar 

  88. Frank S, Braunwald E. Idiopathic hypertrophic subaortic stenosis. Clinical analysis of 126 patients with emphasis on the natural history. Circulation. 1968;37(5):759-788.

    Article  PubMed  CAS  Google Scholar 

  89. Goodwin JF, Hollman A, Cleland WP, Teare D. Obstructive cardiomyopathy simulating aortic stenosis. Br Heart J. 1960;22:403-414.

    Article  PubMed  CAS  Google Scholar 

  90. Wigle ED, Heimbecker RO, Gunton RW. Idiopathic ventricular septal hypertrophy causing muscular subaortic stenosis. Circulation. 1962;26:325-340.

    Article  PubMed  CAS  Google Scholar 

  91. Wigle ED, Sasson Z, Henderson MA, et al. Hypertrophic cardiomyopathy. The importance of the site and the extent of hypertrophy. A review. Prog Cardiovasc Dis. 1985;28:1-83.

    Article  PubMed  CAS  Google Scholar 

  92. Maron BJ, Nishimura RA, Danielson GK. Pitfalls in clinical recognition and a novel operative approach for hypertrophic cardiomyopathy with severe outflow obstruction due to anomalous papillary muscle. Circulation. 1998;98:2505-2508.

    Article  PubMed  CAS  Google Scholar 

  93. Klues HG, Roberts WC, Maron BJ. Anomalous insertion of papillary muscle directly into anterior mitral leaflet in hypertrophic cardiomyopathy. Significance in producing left ventricular outflow obstruction. Circulation. 1991;84:1188-1197.

    Article  PubMed  CAS  Google Scholar 

  94. Davies MJ, McKenna WJ. Hypertrophic cardiomyopathy: pathology and pathogenesis. Histopathology. 1995;26:493-500.

    Article  PubMed  CAS  Google Scholar 

  95. Shapiro LM, McKenna WJ. Distribution of left ventricular hypertrophy in hypertrophic cardiomyopathy: a two-dimensional echocardiographic study. J Am Coll Cardiol. 1983;2:437-444.

    Article  PubMed  CAS  Google Scholar 

  96. Delling FN, Sanborn DY, Levine RA, et al. Frequency and mechanism of persistent systolic anterior motion and mitral regurgitation after septal ablation in obstructive hypertrophic cardiomyopathy. Am J Cardiol. 2007;100(11):1691-1695.

    Article  PubMed  Google Scholar 

  97. He S, Hopmeyer J, Lefebvre XP, Schwammenthal E, Yoganathan AP, Levine RA. Importance of leaflet elongation in causing systolic anterior motion of the mitral valve. J Heart Valve Dis. 1997;6(2):149-159.

    PubMed  CAS  Google Scholar 

  98. Levine RA, Vlahakes GJ, Lefebvre X, et al. Papillary muscle displacement causes systolic anterior motion of the mitral valve. Experimental validation and insights into the mechanism of subaortic obstruction. Circulation. 1995;91(4):1189-1195.

    Article  PubMed  CAS  Google Scholar 

  99. Maron BJ, Harding AM, Spirito P, et al. Systolic anterior motion of the posterior mitral leaflet: a previously unrecognized cause of dynamic subaortic obstruction in patients with hypertrophic cardiomyopathy. Circulation. 1983;68(2):282-293.

    Article  PubMed  CAS  Google Scholar 

  100. Spirito P, Maron BJ. Patterns of systolic anterior motion of the mitral valve in hypertrophic cardiomyopathy: assessment by two-dimensional echocardiography. Am J Cardiol. 1984;54(8):1039-1046.

    Article  PubMed  CAS  Google Scholar 

  101. Spirito P, Maron BJ. Significance of left ventricular outflow tract cross-sectional area in hypertrophic cardiomyopathy: a two-dimensional echocardiographic assessment. Circulation. 1983;67(5):1100-1108.

    Article  PubMed  CAS  Google Scholar 

  102. Reis RL, Bolton MR, King JF, et al. Anterion-superior displacement of papillary muscles producing obstruction and mitral regurgitation in idiopathic hypertrophic subaortic stenosis. Operative relief by posterior-superior realignment of papillary muscles following ventricular septal myectomy. Circulation. 1974;50(2 suppl):II181-II188.

    Google Scholar 

  103. Klues HG, Roberts WC, Maron BJ. Morphological determinants of echocardiographic patterns of mitral valve systolic anterior motion in obstructive hypertrophic cardiomyopathy. Circulation. 1993;87(5):1570-1579.

    Article  PubMed  CAS  Google Scholar 

  104. Klues HG, Proschan MA, Dollar AL, et al. Echocardiographic assessment of mitral valve size in obstructive hypertrophic cardiomyopathy. Anatomic validation from mitral valve specimen. Circulation. 1993;88(2):548-555.

    Article  PubMed  CAS  Google Scholar 

  105. Cannon RO, Dilsizian V, O’Gara PT, et al. Myocardial metabolic, hemodynamic, and electrocardiographic significance of reversible thallium-201 abnormalities in hypertrophic cardiomyopathy. Circulation. 1991;83(5):1660-1667.

    Article  PubMed  Google Scholar 

  106. Pasternac A, Noble J, Streulens Y, et al. Pathophysiology of chest pain in patients with cardiomyopathies and normal coronary arteries. Circulation. 1982;65(4):778-789.

    Article  PubMed  CAS  Google Scholar 

  107. Camici P, Chiriatti G, Lorenzoni R, et al. Coronary vasodilation is impaired in both hypertrophied and nonhypertrophied myocardium of patients with hypertrophic cardiomyopathy: a study with nitrogen-13 ammonia and positron emission tomography. J Am Coll Cardiol. 1991;17(4):879-886.

    Article  PubMed  CAS  Google Scholar 

  108. Elliott PM, Rosano GM, Gill JS, et al. Changes in coronary sinus pH during dipyridamole stress in patients with hypertrophic cardiomyopathy. Heart. 1996;75(2):179-183.

    Article  PubMed  CAS  Google Scholar 

  109. Cannon RO III, Rosing DR, Maron BJ, et al. Myocardial ischemia in patients with hypertrophic cardiomyopathy: contribution of inadequate vasodilator reserve and elevated left ventricular filling pressures. Circulation. 1985;71(2):234-243.

    Article  PubMed  Google Scholar 

  110. Morioka N, Shigematsu Y, Hamada M, Higaki J. Circulating levels of heart-type fatty acid-binding protein and its relation to thallium-201 perfusion defects in patients with hypertrophic cardiomyopathy. Am J Cardiol. 2005;95(11):1334-1337.

    Article  PubMed  CAS  Google Scholar 

  111. Elliott PM, Kaski JC, Prasad K, et al. Chest pain during daily life in patients with hypertrophic cardiomyopathy: an ambulatory electrocardiographic study. Eur Heart J. 1996;17(7):1056-1064.

    Article  PubMed  CAS  Google Scholar 

  112. Cecchi F, Olivotto I, Gistri R, et al. Coronary microvascular dysfunction and prognosis in hypertrophic cardiomyopathy. N Engl J Med. 2003;349(11):1027-1035.

    Article  PubMed  CAS  Google Scholar 

  113. Shimizu M, Ino H, Okeie K, et al. Exercise-induced ST-segment depression and systolic dysfunction in patients with nonobstructive hypertrophic cardiomyopathy. Am Heart J. 2000;140(1):52-60.

    Article  PubMed  CAS  Google Scholar 

  114. Dilsizian V, Bonow RO, Epstein SE, Fananapazir L. Myocardial ischemia detected by thallium scintigraphy is frequently related to cardiac arrest and syncope in young patients with hypertrophic cardiomyopathy. J Am Coll Cardiol. 1993;22(3):796-804.

    Article  PubMed  CAS  Google Scholar 

  115. Lipshultz SE, Sleeper LA, Towbin JA, et al. The incidence of pediatric cardiomyopathy in two regions of the United States. N Engl J Med. 2003;348(17):1647-1655.

    Article  PubMed  Google Scholar 

  116. Nugent AW, Daubeney PE, Chondros P, et al; National Australian Childhood Cardiomyopathy Study. The epidemiology of childhood cardiomyopathy in Australia. N Engl J Med. 2003;348(17):1639-1646.

    Google Scholar 

  117. Maron BJ. Hypertrophic cardiomyopathy in childhood. Pediatr Clin North Am. 2004;51(5):1305-1346.

    Article  PubMed  Google Scholar 

  118. Maron BJ, Spirito P, Wesley Y, Arce J. Development and progression of left ventricular hypertrophy in children with hypertrophic cardiomyopathy. N Engl J Med. 1986;315(10):610-614.

    Article  PubMed  CAS  Google Scholar 

  119. Topol EJ, Traill TA, Fortuin NJ. Hypertensive hypertrophic cardiomyopathy of the elderly. N Engl J Med. 1985;312(5):277-283.

    Article  PubMed  CAS  Google Scholar 

  120. Chikamori T, Doi YL, Yonezawa Y, Dickie S, Ozawa T, McKenna WJ. Comparison of clinical features in patients greater than or equal to 60 years of age to those less than or equal to 40 years of age with hypertrophic cardiomyopathy. Am J Cardiol. 1990;66(10):875-878.

    Google Scholar 

  121. Maron BJ, Schiffers A, Klues HG. Comparison of phenotypic expression of hypertrophic cardiomyopathy in patients from the United States and Germany. Am J Cardiol. 1999;83(4):626-627, A10.

    Google Scholar 

  122. Fay WP, Taliercio CP, Ilstrup DM, et al. Natural history of hypertrophic cardiomyopathy in the elderly. J Am Coll Cardiol. 1990;16(4):821-826.

    Article  PubMed  CAS  Google Scholar 

  123. Gilligan DM, Chan WL, Ang EL, Oakley CM. Effects of a meal on hemodynamic function at rest and during exercise in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol. 1991;18:429-436.

    Article  PubMed  CAS  Google Scholar 

  124. Lewis JF, Maron BJ. Clinical and morphologic expression of hypertrophic cardiomyopathy in patients > or = 65 years of age. Am J Cardiol. 1994;73(15):1105-1111.

    Article  PubMed  CAS  Google Scholar 

  125. McKenna WJ, Franklin RCG, Nihoyannopoulos P, et al. Arrhythmia and prognosis in infants, children and adolescents with hypertrophic cardiomyopathy. J Am Coll Cardiol. 1988;11:147-153.

    Article  PubMed  CAS  Google Scholar 

  126. Maron BJ, Casey SA, Poliac LC, Gohman TE, Almquist AK, Aeppli DM. Clinical course of hypertrophic cardiomyopathy in a regional United States cohort. JAMA. 1999;281(7):650-655.

    Article  PubMed  CAS  Google Scholar 

  127. Spirito P, Chiarella F, Carratino L, et al. Clinical course and prognosis of hypertrophic cardiomyopathy in an outpatient population. N Engl J Med. 1989;320(12):749-755.

    Article  PubMed  CAS  Google Scholar 

  128. Prasad K, Williams L, Campbell R, Elliott PM, McKenna WJ, Frenneaux M. Episodic syncope in hypertrophic cardiomyopathy: evidence for inappropriate vasodilation. Heart. 2008;94(10):1312-1317.

    Article  PubMed  CAS  Google Scholar 

  129. Paz R, Jortner R, Tunick PA, et al. The effect of the ingestion of ethanol on obstruction of the left ventricular outflow tract in hypertrophic cardiomyopathy. N Engl J Med. 1996;335:938-941.

    Article  PubMed  CAS  Google Scholar 

  130. Savage DD, Seides SF, Clark CE, et al. Electrocardiographic findings in patients with obstructive and non-obstructive hypertrophic cardiomyopathy. Circulation. 1978;58:402-409.

    Article  PubMed  CAS  Google Scholar 

  131. Maron BJ, Wolfson JK, Ciro E, Spirito P. Relation of electrocardiographic abnormalities and patterns of left ventricular hypertrophy identified by 2-dimensional echocardiography in patients with hypertrophic cardiomyopathy. Am J Cardiol. 1983;51:189-194.

    Article  PubMed  CAS  Google Scholar 

  132. Lemery R, Kleinebenne A, Nihoyannopoulos P, Alfonso F, McKenna WJ. Q-waves in hypertrophic cardiomyopathy in relation to the distribution and severity of right and left ventricular hypertrophy. J Am Coll Cardiol. 1990;16:368-374.

    Article  PubMed  CAS  Google Scholar 

  133. Fananapazir L, Tracey CM, Leon MB, et al. Electrophysiological abnormalities in patients with hypertrophic cardiomyopathy: a consecutive analysis in 155 patients. Circulation. 1989;80:1259.

    Article  PubMed  CAS  Google Scholar 

  134. Yamaguchi H, Ishimura T, Nishiyama S, et al. Hypertrophic nonobstructive cardiomyopathy with giant negative T-waves (apical hypertrophy): ventriculographic and echocardiographic features in 30 patients. Am J Cardiol. 1979;44:401-412.

    Article  PubMed  CAS  Google Scholar 

  135. Krikler DM, Davies MJ, Rowland E, Goodwin JF, Evans RC, Shaw DB. Sudden death in hypertrophic cardiomyopathy: associated accessory atrioventricular pathways. Br Heart J. 1980;43:245-251.

    Article  PubMed  CAS  Google Scholar 

  136. Adabag AS, Casey SA, Kuskowski MA, et al. Spectrum and prognostic significance of arrhythmias on ambulatory Holter electrocardiogram in hypertrophic cardiomyopathy. J Am Coll Cardiol. 2005;45(5):697-704.

    Article  PubMed  Google Scholar 

  137. McKenna WJ, England D, Doi Y, Deanfield JE, Oakley CM, Goodwin JF. Arrhythmia in hypertrophic cardiomyopathy. 1. Influence on prognosis. Br Heart J. 1981;46:168-172.

    Article  PubMed  CAS  Google Scholar 

  138. Maron BJ, Savage DD, Wolfson JK, Epstein SE. Prognostic significance of 24 hour ambulatory electrocardiographic monitoring in patients with hypertrophic cardiomyopathy: a prospective study. Am J Cardiol. 1981;48:252-257.

    Article  PubMed  CAS  Google Scholar 

  139. Robinson K, Frenneaux MP, Stockins B, Karatasakis G, Poloniecki J, McKenna WJ. Atrial fibrillation in hypertrophic cardiomyopathy: a longitudinal study. J Am Coll Cardiol. 1990;15:1279-1285.

    Article  PubMed  CAS  Google Scholar 

  140. Alfonso F, Frenneaux MP, McKenna WJ. Clinical sustained uniform ventricular tachycardia in hypertrophic cardiomyopathy: association with left ventricular apical aneurysm. Br Heart J. 1989;61:178-181.

    Article  PubMed  CAS  Google Scholar 

  141. Losi MA, Betocchi S, Aversa M, et al. Determinants of atrial fibrillation development in patients with hypertrophic cardiomyopathy. Am J Cardiol. 2004;94(7):895-900.

    Article  PubMed  Google Scholar 

  142. Topol EJ, Califf RM, Prystowsky EN, et al. Textbook of Cardiovascular Medicine. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 2007 [chapter 29].

    Google Scholar 

  143. Klues HG, Schiffers A, Maron BJ. Phenotypic spectrum and patterns of left ventricular hypertrophy in hypertrophic cardiomyopathy: morphologic observations and significance as assessed by two-dimensional echocardiography in 600 patients. J Am Coll Cardiol. 1995;26:1699-1708.

    Article  PubMed  CAS  Google Scholar 

  144. Doi YL, McKenna WJ, Gehrke J, et al. M mode echocardiography in hypertrophic cardiomyopathy: diagnostic criteria and prediction of obstruction. Am J Cardiol. 1980;45(1):6-14.

    Google Scholar 

  145. Spirito P, Bellone P, Harris KM, Bernabo P, Bruzzi P, Maron BJ. Magnitude of left ventricular hypertrophy and risk of sudden death in hypertrophic cardiomyopathy. N Engl J Med. 2000;342(24):1778-1785.

    Article  PubMed  CAS  Google Scholar 

  146. Spirito P, Maron BJ. Relation between extent of left ventricular hypertrophy and age in hypertrophic cardiomyopathy. J Am Coll Cardiol. 1989;13(4):820-823.

    Article  PubMed  CAS  Google Scholar 

  147. Panza JA, Petrone RK, Fananapazir L, Maron BJ. Utility of continuous wave Doppler echocardiography in the non-invasive assessment of left ventricular outflow tract pressure gradient in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol. 1991;19:91-99.

    Article  Google Scholar 

  148. Nishimura RS, Appleton CP, Redfield MM, et al. Nonivasive Doppler echocardiographic evaluation of left ventricular filling pressures in patients with cardiomyopathies: a simultaneous Doppler echocardiographic and cardiac catheterization study. J Am Coll Cardiol. 1996;28:1226-1233.

    Google Scholar 

  149. Spirito P, Maron BJ, Bonow RO, Epstein SE. Occurrence and significance of progressive left ventricular wall thinning and relative cavity dilatation in hypertrophic cardiomyopathy. Am J Cardiol. 1987;60:123-139.

    Article  PubMed  CAS  Google Scholar 

  150. Sharma S, Elliott P, Whyte G, et al. Utility of cardiopulmonary exercise in the assessment of clinical determinants of functional capacity in hypertrophic cardiomyopathy. Am J Cardiol. 2000;86:162-168.

    Article  PubMed  CAS  Google Scholar 

  151. Jones S, Elliott PM, Sharma S, McKenna WJ, Whipp BJ. Cardiopulmonary responses to exercise in patients with hypertrophic cardiomyopathy. Heart. 1998;80:60-67.

    PubMed  CAS  Google Scholar 

  152. Sadoul N, Prasad K, Elliott PM, Banerjee S, Frenneaux MP, McKenna WJ. Prospective prognostic assessment of blood pressure response during exercise in patients with hypertrophic cardiomyopathy. Circulation. 1997;96:2987-2991.

    Article  PubMed  CAS  Google Scholar 

  153. Maki S, Ikeda H, Muro A, et al. Predictors of sudden cardiac death in hypertrophic cardiomyopathy. Am J Cardiol. 1998;82:774-778.

    Article  PubMed  CAS  Google Scholar 

  154. Olivotto I, Maron BJ, Montereggi A, et al. Prognostic value of systemic blood pressure response during exercise in a community based population with hypertrophic cardiomyopathy. J Am Coll Cardiol. 1999;33:2044-2051.

    Article  PubMed  CAS  Google Scholar 

  155. Counihan PJ, Frenneaux MP, Webb DJ, McKenna WJ. Abnormal vascular responses to supine exercise in hypertrophic cardiomyopathy. Circulation. 1991;84:686-696.

    Article  PubMed  CAS  Google Scholar 

  156. Ciampi Q, Betocchi S, Lombardi R, et al. Hemodynamicv determinants of exercise-induced abnormal blood pressure response in hypertrophic cardiomyopathy. J Am Coll Cardiol. 2002;40:278-284.

    Article  PubMed  Google Scholar 

  157. Moon JCC, McKenna WJ, McCrohon JA, et al. Towards clinical risk assessment in hypertrophic cardiomyopathy with gadolinium cardiovascular magnetic resonance. J Am Coll Cardiol. 2003;41:1561-1567.

    Article  PubMed  Google Scholar 

  158. Choudhury L, Mahrholdt H, Wagner A, et al. Myocardial scarring in asymptomatic or mildly symptomatic patients with hypertrophic cardiomyopathy. J Am Coll Cardiol. 2002;53:121-123.

    Google Scholar 

  159. Moon JC, Reed E, Sheppard MN, et al. The histologic basis of late gadolinium enhancement cardiovascular magnetic resonance in hypertrophic cardiomyopathy. J Am Coll Cardiol. 2004;43(12):2260-2264.

    Article  PubMed  Google Scholar 

  160. Amano Y, Takayama M, Takahama K, et al. Delayed hyper-enhancement of myocardium in hypertrophic cardiomyopathy with asymmetrical septal hypertrophy: comparison with global and regional cardiac MR imaging appearances. J Magn Reson Imaging. 2004;20(4):595-600.

    Article  PubMed  Google Scholar 

  161. Moon JC, Mogensen J, Elliott PM, et al. Myocardial late gadolinium enhancement cardiovascular magnetic resonance in hypertrophic cardiomyopathy caused by mutations in troponin I. Heart. 2005;91(8):1036-1040.

    Article  PubMed  CAS  Google Scholar 

  162. Teraoka K, Hirano M, Ookubo H, et al. Delayed contrast enhancement of MRI in hypertrophic cardiomyopathy. Magn Reson Imaging. 2004;22(2):155-161.

    Article  PubMed  Google Scholar 

  163. Sipola P, Lauerma K, Jääskeläinen P, et al. Cine MR imaging of myocardial contractile impairment in patients with hypertrophic cardiomyopathy attributable to Asp175Asn mutation in the alpha-tropomyosin gene. Radiology. 2005;236(3):815-824.

    Article  PubMed  Google Scholar 

  164. Spirito P, Seidman CE, McKenna WJ, Maron BJ. The management of hypertrophic cardiomyopathy. N Engl J Med. 1997;336:775-785.

    Article  PubMed  CAS  Google Scholar 

  165. Maron BJ. Hypertrophic cardiomyopathy. A systematic review. JAMA. 2002;287:1308-1320.

    Article  PubMed  Google Scholar 

  166. Cohen LS, Braunwald E. Amelioration of angina pectoris in idiopathic hypertrophic subaortic stenosis with beta-adrenergic blockade. Circulation. 1967;35(5):847-851.

    Article  PubMed  CAS  Google Scholar 

  167. Wigle ED, Rakowski H, Kimball BP, Williams WG. Hypertrophic cardiomyopathy. Clinical spectrum and treatment. Circulation. 1995;92(7):1680-1692.

    Article  PubMed  CAS  Google Scholar 

  168. Gilligan DM, Chan WL, Joshi J, et al. A double-blind, placebo-controlled crossover trial of nadolol and verapamil in mild and moderately symptomatic hypertrophic cardiomyopathy. J Am Coll Cardiol. 1993;21(7):1672-1679.

    Article  PubMed  CAS  Google Scholar 

  169. Sherrid MV, Pearle G, Gunsburg DZ. Mechanism of benefit of negative inotropes in obstructive hypertrophic cardiomyopathy. Circulation. 1998;97(1):41-47.

    Google Scholar 

  170. Ostman-Smith I, Wettrell G, Riesenfeld T. A cohort study of childhood hypertrophic cardiomyopathy: improved survival following high-dose beta-adrenoceptor antagonist treatment. J Am Coll Cardiol. 1999;34(6):1813-1822.

    Article  PubMed  CAS  Google Scholar 

  171. Kaltenbach M, Hopf R, Kober G, Bussmann WD, Keller M, Petersen Y. Treatment of hypertrophic obstructive cardiomyopathy with verapamil. Br Heart J. 1979;42(1):35-42.

    Article  PubMed  CAS  Google Scholar 

  172. Rosing DR, Kent KM, Maron BJ, et al. Verapamil therapy: a new approach to the pharmacologic treatment of hypertrophic cardiomyopathy. II. Effects on exercise capacity and symptomatic status. Circulation. 1979;60(6):1208-1213.

    Article  PubMed  CAS  Google Scholar 

  173. Bonow RO, Rosing DR, Bacharach SL, et al. Effects of verapamil on left ventricular systolic function and diastolic filling in patients with hypertrophic cardiomyopathy. Circulation. 1981;64(4):787-796.

    Article  PubMed  CAS  Google Scholar 

  174. Spicer RL, Rocchini AP, Crowley DC, Rosenthal A. Chronic verapamil therapy in pediatric and young adult patients with hypertrophic cardiomyopathy. Am J Cardiol. 1984;53(11):1614-1619.

    Article  PubMed  CAS  Google Scholar 

  175. Udelson JE, Bonow RO, O’Gara PT, et al. Verapamil prevents silent myocardial perfusion abnormalities during exercise in asymptomatic patients with hypertrophic cardiomyopathy. Circulation. 1989;79(5):1052-1060.

    Article  PubMed  CAS  Google Scholar 

  176. Gistri R, Cecchi F, Choudhury L, et al. Effect of verapamil on absolute myocardial blood flow in hypertrophic cardiomyopathy. Am J Cardiol. 1994;74(4):363-368.

    Article  PubMed  CAS  Google Scholar 

  177. Iwase M, Sotobata I, Takagi S, et al. Effects of diltiazem on left ventricular diastolic behavior in patients with hypertrophic cardiomyopathy: evaluation with exercise pulsed Doppler echocardiography. J Am Coll Cardiol. 1987;9(5):1099-1105.

    Article  PubMed  CAS  Google Scholar 

  178. Pollick C. Muscular subaortic stenosis: hemodynamic and clinical improvement after disopyramide. N Engl J Med. 1982;307:997-999.

    Article  PubMed  CAS  Google Scholar 

  179. Pollick C, Kimball B, Henderson M, Wigle ED. Disopyramide in hypertrophic cardiomyopathy. I. Hemodynamic assessment after intravenous administration. Am J Cardiol. 1988;62:1248-1251.

    Article  PubMed  CAS  Google Scholar 

  180. Matsubara H, Nakatani S, Nagata S, et al. Salutary effect of disopyramide on left ventricular diastolic function in hypertrophic obstructive cardiomyopathy. J Am Coll Cardiol. 1995;26:768-775.

    Article  PubMed  CAS  Google Scholar 

  181. Sherrid MV, Barac I, McKenna WJ, et al. Multicenter study of the efficacy and safety of disopyramide in obstructive hypertrophic cardiomyopathy. J Am Coll Cardiol. 2005;45(8):1251-1258.

    Article  PubMed  CAS  Google Scholar 

  182. Schulte HD, Bircks WH, Loesse B, Godehardt EA, Schwartzkopff B. Prognosis of patients with hypetrophic cardiomyopathy after transaortic myectomy. Late results up to twenty five years. J Thorac Cardiovasc Surg. 1993;106:709-717.

    PubMed  CAS  Google Scholar 

  183. Morrow AG, Reitz BA, Epstein SE, et al. Operative treatment in hypertrophic subaortic stenosis: techniques and the results of pre and post-operative assessments in 83 patients. Circulation. 1975;52:88-102.

    Article  PubMed  CAS  Google Scholar 

  184. Maron BJ, Epstein SE, Morrow AG. Symptomatic status and prognosis of patients after operation for hypertrophic cardiomyopathy: efficacy of ventricular septal myotomy/myectomy. Eur Heart J. 1983;4(suppl F):175-180.

    Google Scholar 

  185. Williams WG, Wigle ED, Rakowski H, Smallhorn J, LeBlanc J, Trusler GA. Results of surgery for hypertrophic obstructive cardiomyopathy. Circulation. 1987;76:V104-V108.

    PubMed  CAS  Google Scholar 

  186. Schoendube FA, Klues HG, Reith S, Flachskampf FA, Hanrath P, Messmer BJ. Long-term clinical and echocardiographic follow-up after surgical correction of hypertrophic obstructive cardiomyopathy with extended myectomy and reconstruction of the subvalvular mitral apparatus. Circulation. 1995;92:II122-II127.

    Google Scholar 

  187. Lakkis NM, Nagueh SF, Dunn JK, Killip D, Spencer WH III. Nonsurgical septal reduction therapy for hypertrophic obstructive cardiomyopathy: one-year follow-up. J Am Coll Cardiol. 2000;36:852-855.

    Article  PubMed  CAS  Google Scholar 

  188. Faber L, Meissner A, Ziemssen P, Seggewiss H. Percutaneous transluminal septal myocardial ablation for hypertrophic obstructive cardiomyopathy: long term follow up of the first series of 25 patients. Heart. 2000;83:326-331.

    Article  PubMed  CAS  Google Scholar 

  189. Faber L, Seggewiss H, Gleichmann U. Percutaneous transluminal septal myocardial ablation in hypertrophic obstructive cardiomyopathy: results with respect to intraprocedural myocardial contrast echocardiography. Circulation. 1998;98:2415-2421.

    Article  PubMed  CAS  Google Scholar 

  190. Gietzen FH, Leuner CJ, Raute-Kreinsen U, et al. Acute and long-term results after transcoronary ablation of septal hypertrophy (TASH). Catheter interventional treatment for hypertrophic obstructive cardiomyopathy. Eur Heart J. 1999;20:1342-1354.

    Google Scholar 

  191. Knight C, Kurbaan AS, Seggewiss H, et al. Nonsurgical septal reduction for hypertrophic obstructive cardiomyopathy: outcome in the first series of patients. Circulation. 1997;95:2075-2081.

    Article  PubMed  CAS  Google Scholar 

  192. Seggewiss H, Gleichmann U, Faber L, Fassbender D, Schmidt HK, Strick S. Percutaneous transluminal septal myocardial ablation in hypertrophic obstructive cardiomyopathy: acute results and 3-month follow-up in 25 patients. J Am Coll Cardiol. 1998;31:252-258.

    Article  PubMed  CAS  Google Scholar 

  193. Mazur W, Nagueh SF, Lakkis NM, et al. Regression of left ventricular hypertrophy after non-surgical septal reduction therapy for hypertrophic cardiomyopathy. Circulation. 2001;103:1492-1496.

    Article  PubMed  CAS  Google Scholar 

  194. Nagueh SF, Ommen SR, Lakkis NM, et al. Comparison of ethanol septal reduction therapy with surgical myectomy for the treatment of hypertrophic obstructive cardiomyopathy. J Am Coll Cardiol. 2001;38:1701-1706.

    Article  PubMed  CAS  Google Scholar 

  195. Qin JX, Shiota T, Lever HM, et al. Outcome of patients with hypertrophic obstructive cardiomyopathy after percutaneous transluminal septal myocardial ablation and septal myectomy surgery. J Am Coll Cardiol. 2001;38:1994-2000.

    Article  PubMed  CAS  Google Scholar 

  196. Firoozi S, Elliott P, Sharma S, et al. Septal myotomy-myectomy and transcoronary septal alcohol ablation in hypertrophic obstructive cardiomyopathy. A comparison of clinical, haemodynamic and exercise outcomes. Eur Heart J. 2002;23:1617.

    Google Scholar 

  197. Gietzen FH, Leuner CJ, Obergassel L, et al. Transcoronary ablation of septal hypertrophy for hypertrophic obstructive cardiomyopathy: feasibility, clinical benefit, and short term results in elderly patients. Heart. 2004;90(6):638-644.

    Article  PubMed  CAS  Google Scholar 

  198. Fernandes VL, Nagueh SF, Wang W, et al. A prospective follow-up of alcohol septal ablation for symptomatic hypertrophic obstructive cardiomyopathy–the Baylor experience (1996–2002). Clin Cardiol. 2005;28(3):124-130.

    Article  PubMed  Google Scholar 

  199. Chang SM, Lakkis NM, Franklin J, et al. Predictors of outcome after alcohol septal ablation therapy in patients with hypertrophic obstructive cardiomyopathy. Circulation. 2004;109(7):824-827.

    Article  PubMed  Google Scholar 

  200. Ralph-Edwards A, Woo A, McCrindle BW, et al. Hypertrophic obstructive cardiomyopathy: comparison of outcomes after myectomy or alcohol ablation adjusted by propensity score. J Thorac Cardiovasc Surg. 2005;129(2):351-358.

    Article  PubMed  Google Scholar 

  201. Talreja DR, Nishimura RA, Edwards WD, et al. Alcohol septal ablation versus surgical septal myectomy: comparison of effects on atrioventricular conduction tissue. J Am Coll Cardiol. 2004;44(12):2329-2332.

    Article  PubMed  Google Scholar 

  202. Jeanrenaud X, Goy JJ, Kappenberger L. Effects of dual-chamber pacing in hypertrophic obstructive cardiomyopathy. Lancet. 1992;339:1318-1323.

    Article  PubMed  CAS  Google Scholar 

  203. Nishimura RA, Trusty JM, Hayes DL, et al. Dual chamber pacing for hypertrophic cardiomyopathy: a randomised double-blind crossover trial. J Am Coll Cardiol. 1997;29:435-441.

    Article  PubMed  CAS  Google Scholar 

  204. Kappenberger L, Linde C, Daubert C, et al. Pacing in hypertrophic obstructive cardiomyopathy. A randomized crossover study. PIC Study Group. Eur Heart J. 1997;18:1249-1256.

    Article  PubMed  CAS  Google Scholar 

  205. Gadler F, Linde C, Daubert C, et al. Significant improvement of quality of life following atrioventricular synchronous pacing in patients with hypertrophic obstructive cardiomyopathy. Data from 1 year of follow-up. PIC study group. Pacing in cardiomyopathy. Eur Heart J. 1999;20:1044-1050.

    Google Scholar 

  206. Maron BJ, Nishimura RA, McKenna WJ, Rakowski H, Josephson ME, Kieval RS. Assessment of permanent dual-chamber pacing as a treatment for drug-refractory symptomatic patients with obstructive hypertrophic cardiomyopathy. A randomized, double-blind, crossover study (M-PATHY). Circulation. 1999;99:2927-2933.

    Article  PubMed  CAS  Google Scholar 

  207. Betocchi S, Elliott PM, Briguori C, et al. Dual chamber pacing in hypertrophic cardiomyopathy: long-term effects on diastolic function. Pacing Clin Electrophysiol. 2002;25:1433-1440.

    Article  PubMed  Google Scholar 

  208. Fananapazir L, Epstein ND, Curiel RV, et al. Long-term results of dual-chamber (DDD) pacing in obstructive hypertrophic cardiomyopathy. Evidence for progressive symptomatic and hemodynamic improvement and reduction of left ventricular hypertrophy. Circulation. 1994;90(6):2731-2742.

    Article  PubMed  CAS  Google Scholar 

  209. Megevand A, Ingles J, Richmond DR, et al. Long-term follow-up of patients with obstructive hypertrophic cardiomyopathy treated with dual-chamber pacing. Am J Cardiol. 2005;95(8):991-993.

    Article  PubMed  Google Scholar 

  210. Ruzyłło W, Chojnowska L, Demkow M, et al. Left ventricular outflow tract gradient decrease with non-surgical myocardial reduction improves exercise capacity in patients with hypertrophic obstructive cardiomyopathy. Eur Heart J. 2000;21(9):770-777.

    Article  PubMed  Google Scholar 

  211. Biagini E et al. Dilated-hypokinetic evolution of hypertrophic cardiomyopathy: prevalence, incidence, risk factors, and prognostic implications in pediatric and adult patients. J Am Coll Cardiol. 2005;46:1543-1550.

    Article  PubMed  Google Scholar 

  212. Shirani J, Pick R, Roberts WC, Maron BJ. Morphology and significance of the left ventricular collagen network in young patients with hypertrophic cardiomyopathy and sudden cardiac death. J Am Coll Cardiol. 2000;35:36-44.

    Article  PubMed  CAS  Google Scholar 

  213. Chien KR. Genotype, phenotype: upstairs, downstairs in the family of cardiomyopathies. J Clin Invest. 2003;111:175-178.

    PubMed  CAS  Google Scholar 

  214. Maron BJ, Shen W-K, Link MS, et al. Efficacy of implantable cardioverter defibrillators for the prevention of sudden death in patients with hypertrophic cardiomyopathy. N Engl J Med. 2000;342:365-373.

    Article  PubMed  CAS  Google Scholar 

  215. Maron BJ, Estes NAM III, Maron MS, Almquist AK, Link MS, Udelson JE. Primary prevention of sudden death as a novel treatment strategy in hypertrophic cardiomyopathy. Circulation. 2003;107:2872-2875.

    Article  PubMed  Google Scholar 

  216. Elliott PM, Poloniecki J, Dickie S, et al. Sudden death in hypertrophic cardiomyopathy: identification of high risk patients. J Am Coll Cardiol. 2000;36:2212-2218.

    Article  PubMed  CAS  Google Scholar 

  217. Rogers DP, Marazia S, Chow AW, Lambiase PD, et al. Effect of biventricular pacing on symptoms and cardiac remodelling in patients with end stage hypertrophic cardiomyopathy. Eur J Heart Fail. 2008;10(5):507-513.

    Article  PubMed  Google Scholar 

  218. Ashrafian H, Mason MJ, Mitchell AG. Regression of dilated-hypokinetic hypertrophic cardiomyopathy by biventricular cardiac pacing. Europace. 2007;9:50-54.

    Article  PubMed  Google Scholar 

  219. Shirani J, Maron BJ, Cannon RO III, Shahin S, Roberts WC. Clinicopathologic features of hypertrophic cardiomyopathy managed by cardiac transplantation. Am J Cardiol. 1993;72:434-440.

    Article  PubMed  CAS  Google Scholar 

  220. Olivotto I, Cecchi F, Casey SA, Dolara A, Traverse JH, Maron BJ. Impact of atrial fibrillation on the clinical course of hypertrophic cardiomyopathy. Circulation. 2001;104:2517-2524.

    Article  PubMed  CAS  Google Scholar 

  221. Maron BJ, Olivotto I, Bellone P, et al. Clinical profile of stroke in 900 patients with hypertrophic cardiomyopathy. J Am Coll Cardiol. 2002;39:301-307.

    Article  PubMed  Google Scholar 

  222. Cecchi F, Olivotto I, Montereggi A, Santoro G, Dolara A, Maron BJ. Hypertrophic cardiomyopathy in Tuscany: clinical course and outcome in an unselected regional population. J Am Coll Cardiol. 1995;26:1529-1536.

    Article  PubMed  CAS  Google Scholar 

  223. McKenna WJ, Deanfield JE. Hypertrophic cardiomyopathy: an important cause of sudden death. Arch Dis Child. 1984;59:971-975.

    Article  PubMed  CAS  Google Scholar 

  224. Elliott PM, Gimeno Blanes JR, Mahon NG, McKenna WJ. Relation between the severity of left ventricular hypertrophy and prognosis in patients with hypertrophic cardiomyopathy. Lancet. 2001;357:420-424.

    Google Scholar 

  225. Kofflard MJ, Ten Cate FJ, van der Lee C, et al. Hypertrophic cardiomyopathy in a large community-based population: clinical outcome and identification of risk factors for sudden cardiac death and clinical deterioration. J Am Coll Cardiol. 2003;41:987-993.

    Article  PubMed  Google Scholar 

  226. Stafford WJ, Trohman RG, Bilsker M, Zaman L, Catellanos A, Myerburg RJ. Cardiac arrest in an adolescent with atrial fibrillation and hypertrophic cardiomyopathy. J Am Coll Cardiol. 1986;7:701-704.

    Article  PubMed  CAS  Google Scholar 

  227. Maron BJ, Robert WC, Epstein SE. Sudden death in hypertrophic cardiomyopathy: a profile of 78 patients. Circulation. 1982;65:1388-1394.

    Article  PubMed  CAS  Google Scholar 

  228. Elliott PM, Sharma S, Varnava A, Poloniecki J, Rowland E, McKenna WJ. Survival after cardiac arrest or sustained ventricular tachycardia in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol. 1999;33:1596-1601.

    Article  PubMed  CAS  Google Scholar 

  229. Cecchi F, Maron BJ, Epstein SE. Long-term outcome of patients with hypertrophic cardiomyopathy successfully resuscitated after cardiac arrest. J Am Coll Cardiol. 1989;13:1283-1288.

    Article  PubMed  CAS  Google Scholar 

  230. Olivotto I, Gistri R, Petrone P, Pedemonte E, Vargiu D, Cecchi F. Maximum left ventricular thickness and risk of sudden death in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol. 2003;41:315-321.

    Article  PubMed  Google Scholar 

  231. Saumarez RC, Chojnowska L, Derksen R, et al. Sudden death in noncoronary heart disease is associated with delayed paced ventricular activation. Circulation. 2003;107:2595-2600.

    PubMed  Google Scholar 

  232. Silka MJ, Kron J, Dunnigan A, et al. Sudden cardiac death and the use of implantable cardioverter-defibrillators in pediatric patients. The Pediatric Electrophysiology Society. Circulation. 1993;87(3):800-807.

    Article  PubMed  CAS  Google Scholar 

  233. Kron J, Oliver RP, Norsted S, Silka MJ. The automatic implantable cardioverter-defibrillator in young patients. J Am Coll Cardiol. 1990;16(4):896-902.

    Article  PubMed  CAS  Google Scholar 

  234. Maron BJ, Spirito P, Shen WK, et al. Implantable cardioverter-defibrillators and prevention of sudden cardiac death in hypertrophic cardiomyopathy. JAMA. 2007;298(4):405-412.

    Article  PubMed  CAS  Google Scholar 

  235. Taylor MR, Carniel E, Mestroni L. Cardiomyopathy, familial dilated. Orphanet J Rare Dis. 2006;1:27.

    Article  PubMed  Google Scholar 

  236. Bowles NE, Bowles KR, Towbin JA. Viral genomic detection and outcome in myocarditis. Heart Fail Clin. 2005;1(3):407-417.

    Article  PubMed  Google Scholar 

  237. Cooper LT, Baughman KL, Feldman AM, et al. The role of endomyocardial biopsy in the management of cardiovascular disease: a scientific statement from the American Heart Association, the American College of Cardiology, and the European Society of Cardiology. Endorsed by the Heart Failure Society of America and the Heart Failure Association of the European Society of Cardiology. J Am Coll Cardiol. 2007;50(19):1914-1931.

    Article  PubMed  Google Scholar 

  238. Weber MA, Ashworth MT, Risdon RA, et al. Clinicopathological features of paediatric deaths due to myocarditis: an autopsy series. Arch Dis Child. 2008;93(7):594-598.

    Article  PubMed  CAS  Google Scholar 

  239. Burkett EL, Hershberger RE. Clinical and genetic issues in familial dilated cardiomyopathy. J Am Coll Cardiol. 2005;45:969-981.

    Article  PubMed  CAS  Google Scholar 

  240. Dec GM, Fuster V. Idiopathic dilated cardiomyopathy. N Engl J Med. 1994;331:1564-1575.

    Article  PubMed  CAS  Google Scholar 

  241. Mestroni L, Rocco C, Gregori D, et al. Familial dilated cardiomyopathy: evidence for genetic and phenotypic heterogeneity. J Am Coll Cardiol. 1999;34:181-190.

    Article  PubMed  CAS  Google Scholar 

  242. Politano L, Nigro V, Nigro G, et al. Development of cardiomyopathy in female carriers of Duchenne and Becker muscular dystrophies. JAMA. 1996;275:1335-1338.

    Article  PubMed  CAS  Google Scholar 

  243. Bione S, D’Adamo P, Maestrini E, et al. A novel X-linked gene, G4.5. is responsible for Barth syndrome. Nat Genet. 1996;12(4):385-389.

    Google Scholar 

  244. Fatkin D, MacRae C, Sasaki T, et al. Missense mutations in the rod domain of the lamin A/C gene as causes of dilated cardiomyopathy and conduction-system disease. N Engl J Med. 1999;341:1715-1724.

    Article  PubMed  CAS  Google Scholar 

  245. Hershberger RE, Hanson E, Jakobs PM, et al. A novel lamin A/C mutation in a family with dilated cardiomyopathy, prominent conduction system disease, and need for permanent pacemaker implantation. Am Heart J. 2002;144:1081-1086.

    Article  PubMed  CAS  Google Scholar 

  246. Towbin JA, Bowles NE. The failing heart. Nature. 2002;415(6868):227-233.

    Article  PubMed  CAS  Google Scholar 

  247. Towbin JA. The role of cytoskeletal proteins in cardiomyopathies. Curr Opin Cell Biol. 1998;10:131-139.

    Google Scholar 

  248. Bowles NE, Bowles KR, Towbin JA. The “Final Common Pathway” hypothesis and inherited cardiovascular disease: the role of cytoskeletal proteins in dilated cardiomyopathy. Herz. 2000;25:168-175.

    Article  PubMed  CAS  Google Scholar 

  249. Towbin JA, Bowles NE. Dilated cardiomyopathy: a tale of cytoskeletal proteins and beyond. J Cardiovasc Electrophysiol. 2006;17(8):919-926.

    Article  PubMed  Google Scholar 

  250. Cox GF, Kunkel LM. Dystrophies and heart disease. Curr Opin Cardiol. 1997;12:329-343.

    Article  PubMed  CAS  Google Scholar 

  251. Feng J, Yan J, Buzin CH, et al. Mutations in the dystrophin gene are associated with sporadic dilated cardiomyopathy. Mol Genet Metab. 2002;77(1–2):119-126.

    Article  PubMed  CAS  Google Scholar 

  252. Feng J, Yan JY, Buzin CH, et al. Comprehensive mutation scanning of the dystrophin gene in patients with nonsyndromic X-linked dilated cardiomyopathy. J Am Coll Cardiol. 2002;40(6):1120-1124.

    Article  PubMed  CAS  Google Scholar 

  253. Taylor MR, Slavov D, Ku L, et al. Prevalence of desmin mutations in dilated cardiomyopathy. Circulation. 2007;115(10):1244-1251.

    PubMed  CAS  Google Scholar 

  254. Van Tintelen JP, Hofstra RM, Katerberg H, et al. High yield of LMNA mutations in patients with dilated cardiomyopathy and/or conduction disease referred to cardiogenetics outpatient clinics. Am Heart J. 2007;154(6):1130-1139.

    Article  PubMed  CAS  Google Scholar 

  255. Parks SB, Kushner JD, Nauman D, et al. Lamin A/C mutation analysis in a cohort of 324 unrelated patients with idiopathic or familial dilated cardiomyopathy. Am Heart J. 2008;156(1):161-169.

    Article  PubMed  CAS  Google Scholar 

  256. Tsubata S. et al.Mutations in the human d-sarcoglycan gene in familial and sporadic dilated cardiomyopathy. J Clin Invest. 2000;106:655-662.

    Article  PubMed  CAS  Google Scholar 

  257. Barresi R, Di Blasi C, Negri T, et al. Disruption of heart sarcoglycan complex and severe cardiomyopathy caused by beta sarcoglycan mutations. J Med Genet. 2000;37(2):102-107.

    Article  PubMed  CAS  Google Scholar 

  258. Olson TM, Illenberger S, Kishimoto NY, et al. Metavinculin mutations alter actin interaction in dilated cardiomyopathy. Circulation. 2002;105(4):431-437.

    Article  PubMed  CAS  Google Scholar 

  259. Kärkkäinen S, Peuhkurinen K. Genetics of dilated cardiomyopathy. Ann Med. 2007;39(2):91-107.

    Article  PubMed  CAS  Google Scholar 

  260. Kamisago M et al. Mutations in sarcomeric protein genes as a cause of dilated cardiomyopathy. N Engl J Med. 2000;343:1688-1696.

    Article  PubMed  CAS  Google Scholar 

  261. Chang AN, Potter JD. Sarcomeric protein mutations in dilated cardiomyopathy. Heart Fail Rev. 2005;10(3):225-235.

    Article  PubMed  CAS  Google Scholar 

  262. Chang AN, Parvatiyar MS, Potter JD. Troponin and cardiomyopathy. Biochem Biophys Res Commun. 2008;369(1):74-81.

    Article  PubMed  CAS  Google Scholar 

  263. Murphy RT, Mogensen J, Shaw A, et al. Novel mutation in cardiac troponin I in recessive idiopathic dilated cardiomyopathy. Lancet. 2004;363(9406):371-372.

    Article  PubMed  CAS  Google Scholar 

  264. Olson TM, Kishimoto NY, Whitby FG, Michels VV. Mutations that alter the surface change of a-tropomyosin are associated with dilated cardiomyopathy. J Mol Cell Cardiol. 2001;33:723-732.

    Article  PubMed  CAS  Google Scholar 

  265. Pyle WG, Solaro RJ. At the crossroads of myocardial signaling: the role of Z-discs in intracellular signaling and cardiac function. Circ Res. 2004;94(3):296-305.

    Article  PubMed  CAS  Google Scholar 

  266. Vatta M, Mohapatra B, Jimenez S, et al. Mutations in Cypher/ZASP in patients with dilated cardiomyopathy and left ventricular non- compaction. J Am Coll Cardiol. 2003;42(11):2014-2027.

    Article  PubMed  CAS  Google Scholar 

  267. Mohapatra B, Jimenez S, Lin JH, et al. Mutations in the muscle LIM protein and alpha-actinin-2 genes in dilated cardiomyopathy and endocardial fibroelastosis. Mol Genet Metab. 2003;80(1–2):207-215.

    Article  PubMed  CAS  Google Scholar 

  268. Knöll R, Hoshijima M, Hoffman HM, et al. The cardiac mechanical stretch sensor machinery involves a Z disc complex that is defective in a subset of human dilated cardiomyopathy. Cell. 2002;111(7):943-955.

    Article  PubMed  Google Scholar 

  269. Duboscq-Bidot L, Xu P, Charron P, et al. Mutations in the Z-band protein myopalladin gene and idiopathic dilated cardiomyopathy. Cardiovasc Res. 2008;77(1):118-125.

    Article  PubMed  CAS  Google Scholar 

  270. Hayashi T, Arimura T, Itoh-Satoh M, et al. Tcap gene mutations in hypertrophic cardiomyopathy and dilated cardiomyopathy. J Am Coll Cardiol. 2004;44(11):2192-2201.

    Article  PubMed  CAS  Google Scholar 

  271. Schmitt JP, Kamisago M, Asahi M, et al. Dilated cardiomyopathy and heart failure caused by a mutation in phospholamban. Science. 2003;299(5611):1410-1413.

    Article  PubMed  CAS  Google Scholar 

  272. Haghighi K, Kolokathis F, Pater L, et al. Human phospholamban null results in lethal dilated cardiomyopathy revealing a critical difference between mouse and human. J Clin Invest. 2003;111(6):869-876.

    PubMed  CAS  Google Scholar 

  273. McNair WP, Ku L, Taylor MR, et al. SCN5A mutation associated with dilated cardiomyopathy, conduction disorder and arrhythmia. Circulation. 2004;100:2163-2167.

    Article  CAS  Google Scholar 

  274. Nguyen TP, Wang DW, Rhodes TH, et al. Divergent biophysical defects caused by mutant sodium channels in dilated cardiomyopathy with arrhythmia. Circ Res. 2008;102:364-371.

    Article  PubMed  CAS  Google Scholar 

  275. Olson TM, Michels VV, Ballew JD, et al. Sodium channel mutations and susceptibility to heart failure and atrial fibrillation. JAMA. 2005;293(4):447-454.

    Article  PubMed  CAS  Google Scholar 

  276. Arimura T, Hayashi T, Kimura A. Molecular etiology of idiopathic cardiomyopathy. Acta Myol. 2007;26(3):153-158.

    PubMed  CAS  Google Scholar 

  277. LeWinter MM. Functional consequences of sarcomeric protein abnormalities in failing myocardium. Heart Fail Rev. 2005;10(3):249-257.

    Article  PubMed  CAS  Google Scholar 

  278. Towbin JA. Inflammatory cardiomyopathy: there is a specific matrix destruction in the course of the disease. Ernst Schering Res Found Workshop. 2006;(55):219-250.

    Google Scholar 

  279. Ahmad F, Seidman JG, Seidman CE. The genetic basis for cardiac remodeling. Annu Rev Genomics Hum Genet. 2005;6:185-216.

    Article  PubMed  CAS  Google Scholar 

  280. Robinson P, Griffiths PJ, Watkins H, et al. Dilated and hypertrophic cardiomyopathy mutations in troponin and alpha-tropomyosin have opposing effects on the calcium affinity of cardiac thin filaments. Circ Res. 2007;101(12):1266-1273.

    Article  PubMed  CAS  Google Scholar 

  281. Arber S, Hunter JJ, Ross J Jr, et al. MLP-deficient mice exhibit a disruption of cardiac cytoarchitectural organization, dilated cardiomyopathy, and heart failure. Cell. 1997;88(3):393-403.

    Article  PubMed  CAS  Google Scholar 

  282. Zolk O, Caroni P, Böhm M, et al. Decreased expression of the cardiac LIM domain protein MLP in chronic human heart failure. Circulation. 2000;101(23):2674-2677.

    Article  PubMed  CAS  Google Scholar 

  283. Zhou Q, Chu PH, Huang C, et al. Ablation of Cypher, a PDZ-LIM domain Z-line protein, causes a severe form of congenital myopathy. J Cell Biol. 2001;155(4):605-612.

    Article  PubMed  CAS  Google Scholar 

  284. Granzier HL, Labeit S. The giant protein titin: a major player in myocardial mechanics, signaling, and disease. Circ Res. 2004;94(3):284-295.

    Article  PubMed  CAS  Google Scholar 

  285. Knowlton KU. CVB infection and mechanisms of viral cardiomyopathy. Curr Top Microbiol Immunol. 2008;323:315-335.

    Article  PubMed  CAS  Google Scholar 

  286. Badorff C, Knowlton KU. Dystrophin disruption in enterovirus-induced myocarditis and dilated cardiomyopathy: from bench to bedside. Med Microbiol Immunol. 2004;193(2–3):121-126.

    Article  PubMed  CAS  Google Scholar 

  287. Vatta M, Stetson SJ, Perez-Verdia A, et al. Molecular remodeling of dystrophin in patients with end-stage cardiomyopathies and reversal in patients on assistance-device therapy. Lancet. 2002;359(9310):936-941.

    Article  PubMed  CAS  Google Scholar 

  288. Vatta M, Stetson SJ, Jimenez S, et al. Molecular normalization of dystrophin in the failing left and right ventricle of patients treated with either pulsatile or continuous flow-type ventricular assistdevices. J Am Coll Cardiol. 2004;43(5):811-817.

    Article  PubMed  CAS  Google Scholar 

  289. Parnaik VK. Role of nuclear lamins in nuclear organization, cellular signaling, and inherited diseases. Int Rev Cell Mol Biol. 2008;266:157-206.

    Article  PubMed  CAS  Google Scholar 

  290. Brodsky G, Muntoni F, Miocic S, Sinagra G, Sewry C, Mestroni L. Lamin A/C gene mutation associated with dilated cardiomyopathy with variable skeletal muscle involvement. Circulation. 2000;101:473-476.

    Article  PubMed  CAS  Google Scholar 

  291. Becane HM, Bonne G, Varnous S, et al. High incidence of sudden death with conduction system and myocardial disease due to lamins A and C gene mutation. Pacing Clin Electrophysiol. 2000;23:1661-1666.

    Article  PubMed  CAS  Google Scholar 

  292. Jakobs PM, Hanson E, Crispell KA, et al. Novel lamin A/C mutations in two families with dilated cardiomyopathy and conduction system disease. J Card Fail. 2001;7:249-256.

    Article  PubMed  CAS  Google Scholar 

  293. Arbustini E, Pilotto A, Repetto A, et al. Autosomal dominant dilated cardiomyopathy with atrioventricular block: a lamin A/C defectrelated disease. J Am Coll Cardiol. 2002;39:981-990.

    Article  PubMed  CAS  Google Scholar 

  294. Taylor MR, Fain PR, Sinagra G, et al. Natural history of dilated cardiomyopathy due to lamin A/C gene mutations. J Am Coll Cardiol. 2003;41:771-780.

    Article  PubMed  CAS  Google Scholar 

  295. Sebillon P, Bouchier C, Bidot LD, et al. Expanding the phenotype of LMNA mutations in dilated cardiomyopathy and functional consequences of these mutations. J Med Genet. 2003;40:560-567.

    Article  PubMed  CAS  Google Scholar 

  296. Berko BA, Swift M. X-linked dilated cardiomyopathy. N Engl J Med. 1987;316(19):1186-1191.

    Article  PubMed  CAS  Google Scholar 

  297. Hoffman EP, Brown RH, Kunkel LM. Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell. 1987;51:919-928.

    Article  PubMed  CAS  Google Scholar 

  298. Towbin JA, Hejtmancik JF, Brink P, et al. X-linked dilated cardiomyopathy. Molecular genetic evidence of linkage to the Duchenne muscular dystrophy (dystrophin) gene at the Xp21 locus. Circulation. 1993;87(6):1854-1865.

    Article  PubMed  CAS  Google Scholar 

  299. Ervasti JM, Sonnemann KJ. Biology of the striated muscle dystrophin-glycoprotein complex. Int Rev Cytol. 2008;265:191-225.

    Article  PubMed  CAS  Google Scholar 

  300. Kaprielian RR, Stevenson S, Rothery SM, et al. Distinct patterns of dystrophin organization in myocyte sarcolemma and transverse tubules of normal and diseased human myocardium. Circulation. 2000;101(22):2586-2594.

    Article  PubMed  CAS  Google Scholar 

  301. Ségalat L, Grisoni K, Archer J, et al. CAPON expression in skeletal muscle is regulated by position, repair, NOS activity, and dystrophy. Exp Cell Res. 2005;302(2):170-179.

    Article  PubMed  CAS  Google Scholar 

  302. Petrof BJ, Shrager JB, Stedman HH, et al. Dystrophin protects the sarcolemma from stresses developed during muscle contraction. Proc Natl Acad Sci USA. 1993;90(8):3710-3714.

    Article  PubMed  CAS  Google Scholar 

  303. Deconinck N, Dan B. Pathophysiology of duchenne muscular dystrophy: current hypotheses. Pediatr Neurol. 2007;36(1):1-7.

    Article  PubMed  Google Scholar 

  304. Davies KE, Nowak KJ. Molecular mechanisms of muscular dystrophies: old and new players. Nat Rev Mol Cell Biol. 2006;7(10):762-773.

    Article  PubMed  CAS  Google Scholar 

  305. Barth PG, Valianpour F, Bowen VM, et al. X-linked cardioskeletal myopathy and neutropenia (Barth syndrome): an update. Am J Med Genet A. 2004;126A(4):349-354.

    Article  PubMed  Google Scholar 

  306. Houtkooper RH, Vaz FM. Cardiolipin, the heart of mitochondrial metabolism. Cell Mol Life Sci. 2008;65(16):2493-2506.

    Article  PubMed  CAS  Google Scholar 

  307. Izawa H, Murohara T, Nagata K, et al. Mineralocorticoid receptor antagonism ameliorates left ventricular diastolic dysfunction and myocardial fibrosis in mildly symptomatic patients with idiopathic dilated cardiomyopathy: a pilot study. Circulation. 2005;112:2940-2945.

    PubMed  CAS  Google Scholar 

  308. Goldman L, Ausiello D, eds. Cecil Medicine. 23 ed. Philadelphia: Saunders Elsevier; 2007 [chapters 59-68].

    Google Scholar 

  309. Kathy A, Crispell MD, Wray A, et al. Clinical profiles of four large pedigrees with familial dilated cardiomyopathy: preliminary recommendations for clinical practice. J Am Coll Cardiol. 1999;34(3):837-847.

    Article  Google Scholar 

  310. Kilic T, Vural A, Ural D, et al. Cardiac resynchronization therapy in a case of myotonic dystrophy (Steinert’s disease) and dilated cardiomyopathy. Pacing Clin Electrophysiol. 2007;30(7):916-920.

    Article  PubMed  Google Scholar 

  311. Groh WJ, Groh MR, Saha C, et al. Electrocardiographic abnormalities and sudden death in myotonic dystrophy type 1. N Engl J Med. 2008;358(25):2688-2697.

    Article  PubMed  CAS  Google Scholar 

  312. Lainscak M, von Haehling S, Springer J, Anker SD. Biomarkers for chronic heart failure. Heart Fail Monit. 2007;5(3):77-82.

    PubMed  CAS  Google Scholar 

  313. Price JF, Thomas AK, Grenier M, et al. B-type natriuretic peptide predicts adverse cardiovascular events in pediatric outpatients with chronic left ventricular systolic dysfunction. Circulation. 2006;114(10):1063-1069.

    Article  PubMed  CAS  Google Scholar 

  314. Heidecker B, Kasper EK, Wittstein IS, et al. Transcriptomic biomarkers for individual risk assessment in new-onset heart failure. Circulation. 2008;118(3):238-246.

    Article  PubMed  CAS  Google Scholar 

  315. Hamdan A, Shapira Y, Bengal T, et al. Tissue Doppler imaging in patients with advanced heart failure: relation to functional class and prognosis. J Heart Lung Transplant. 2006;25(2):214-218.

    Article  PubMed  Google Scholar 

  316. McMahon CJ, Nagueh SF, Eapen RS, et al. Echocardiographic predictors of adverse clinical events in children with dilated cardiomyopathy: a prospective clinical study. Heart. 2004;90(8):908-915.

    Article  PubMed  CAS  Google Scholar 

  317. Assomull RG, Prasad SK, Lyne J, et al. Cardiovascular magnetic resonance, fibrosis, and prognosis in dilated cardiomyopathy. J Am Coll Cardiol. 2006;48(10):1977-1985.

    Article  PubMed  Google Scholar 

  318. Yokokawa M, Tada H, Koyama K, et al. The characteristics and distribution of the scar tissue predict ventricular tachycardia in patients with advanced heart failure. Pacing Clin Electrophysiol. 2009;32(3):314-322.

    Article  PubMed  Google Scholar 

  319. Shimizu I, Iguchi N, Watanabe H, et al. Delayed enhancement cardiovascular magnetic resonance as a novel technique to predict cardiac events in dilated cardiomyopathy patients. Int J Cardiol. 2009;[Epub ahead of print]

    Google Scholar 

  320. Yokokawa M, Tada H, Toyama T, et al. Magnetic resonance imaging is superior to cardiac scintigraphy to identify nonresponders to cardiac resynchronization therapy. Pacing Clin Electrophysiol. 2009;32(suppl 1):S57-S62.

    Article  PubMed  Google Scholar 

  321. Cohn JN, Johnson G, Ziesche S, et al. A comparison of enalapril with hydralazine-isosorbide dinitrate in the treatment of chronic congestive heart failure. N Engl J Med. 1991;325(5):303-310.

    Article  PubMed  CAS  Google Scholar 

  322. Taylor AL, Ziesche S, Yancy C, et al.; African-American Heart Failure Trial Investigators. Combination of isosorbide dinitrate and hydralazine in blacks with heart failure. N Engl J Med. 2004;351(20):2049-2057.

    Google Scholar 

  323. Loeb HS, Johnson G, Henrick A, et al. Effect of enalapril, hydralazine plus isosorbide dinitrate, and prazosin on hospitalization in patients with chronic congestive heart failure. The V-HeFT VA Cooperative Studies Group. Circulation. 1993;87(6 suppl):VI78-VI87.

    Google Scholar 

  324. Vinge LE, Raake PW, Koch WJ. Gene therapy in heart failure. Circ Res. 2008;102(12):1458-1470.

    Article  PubMed  CAS  Google Scholar 

  325. Yamada S, Nelson TJ, Crespo-Diaz RJ, et al. Stem Embryonic stem cell therapy of heart failure in genetic cardiomyopathy. Cells. 2008;26(10):2644-2653.

    Google Scholar 

  326. Townsend D, Yasuda S, Li S, et al. Emergent dilated cardiomyopathy caused by targeted repair of dystrophic skeletal muscle. Mol Ther. 2008;16(5):832-835.

    Article  PubMed  CAS  Google Scholar 

  327. Crispell K, Wray A, Ni H, Nauman D, Hershberger R. Clinical profiles of four large pedigrees with familial dilated cardiomyopathy: preliminary recommendations for clinical practice. J Am Coll Cardiol. 1999;34:837-847.

    Article  PubMed  CAS  Google Scholar 

  328. Hanson E, Hershberger RE. Genetic counseling and screening issues in familial dilated cardiomyopathy. J Genet Counseling. 2001;10:397-415.

    Article  Google Scholar 

  329. Baig MK, Goldman JH, Caforio AP, Coonar AS, Keeling PJ, McKenna WJ. Familial dilated cardiomyopathy: cardiac abnormalities are common in asymptomatic relatives and may represent early disease. J Am Coll Cardiol. 1998;31:195-201.

    Article  PubMed  CAS  Google Scholar 

  330. Hershberger RE, Ni H, Crispell KA. Familial dilated cardiomyopathy: echocardiographic diagnostic criteria for classification of family members as affected. J Cardiac Fail. 1999;51:203-212.

    Article  Google Scholar 

  331. The SOLVD Investigators. Effect of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fractions. N Engl J Med. 1992;327:685-691.

    Article  Google Scholar 

  332. Crispell KA, Hanson E, Coates K, Toy W, Hershberger R. Periodic rescreening is indicated for family members at risk of developing familial dilated cardiomyopathy. J Am Coll Cardiol. 2002;39:1503-1507.

    Article  PubMed  Google Scholar 

  333. Sen-Chowdhry S, Lowe MD, Sporton SC, McKenna WJ. Arrhythmogenic right ventricular cardiomyopathy: clinical presentation, diagnosis, and management. Am J Med. 2004;117:685-695.

    Article  PubMed  Google Scholar 

  334. Sen-Chowdhry S, Syrris P, McKenna WJ. Genetics of right ventricular cardiomyopathy. J Cardiovasc Electrophysiol. 2005;16(8):927-935.

    Article  PubMed  Google Scholar 

  335. McKenna WJ, Thiene G, Nava A, et al. Diagnosis of arrhythmogenic right ventricular dysplasia/cardiomyopathy. Br Heart J. 1994;71:215-218.

    Article  PubMed  CAS  Google Scholar 

  336. Thiene G, Nava A, Corrado D, et al. Right ventricular cardiomyopathy and sudden death in young people. N Engl J Med. 1988;318:129-133.

    Article  PubMed  CAS  Google Scholar 

  337. Corrado D, Fontaine G, Marcus FI, et al. Arrhythmogenic right ventricular dysplasia/cardiomyopathy: need for an international registry. Study Group on Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy of the Working Groups on Myocardial and Pericardial Disease and Arrhythmias of the European Society of Cardiology and of the Scientific Council on Cardiomyopathies of the World Heart Federation. Circulation. 2000;101(11):E101-E106.

    Google Scholar 

  338. Hamid MS, Norman M, Quraishi A, et al. Prospective evaluation of relatives for familial arrhythmogenic right ventricular cardiomyopathy reveals a need to broaden diagnostic criteria. J Am Coll Cardiol. 2002;40:1445-1450.

    Article  PubMed  Google Scholar 

  339. Nava A, Thiene G, Canciani B, et al. Familial occurrence of right ventricular dysplasia: a study involving nine families. J Am Coll Cardiol. 1988;12:1222-1228.

    Article  PubMed  CAS  Google Scholar 

  340. Merner ND, Hodgkinson KA, Haywood AF, et al. Arrhythmogenic right ventricular cardiomyopathy type 5 is a fully penetrant, lethal arrhythmic disorder caused by a missense mutation in the TMEM43 gene. Am J Hum Genet. 2008;82:809-821.

    Article  PubMed  CAS  Google Scholar 

  341. Coonar AS, Protonotarios N, Tsatsopoulou A, et al. Gene for arrhythmogenic right ventricular cardiomyopathy with diffuse nonepidermolytic palmoplantar keratoderma and woolly hair (Naxos disease) maps to 17q21. Circulation. 1998;97:2049-2058.

    Article  PubMed  CAS  Google Scholar 

  342. McKoy G, Protonotarios N, Crosby A, et al. Identification of a deletion in plakoglobin in arrhythmogenic right ventricular cardiomyopathy with palmoplantar keratoderma and woolly hair (Naxos disease). Lancet. 2000;355:2119-2124.

    Article  PubMed  CAS  Google Scholar 

  343. Protonotarios N, Tsatsopoulou A, Anastasakis A, et al. Genotype-phenotype assessment in autosomal recessive arrhythmogenic right ventricular cardiomyopathy (Naxos disease) caused by a deletion in plakoglobin. J Am Coll Cardiol. 2001;38:1477-1484.

    Article  PubMed  CAS  Google Scholar 

  344. Rao BH, Reddy IS, Chandra KS. Familial occurrence of a rare combination of dilated cardiomyopathy with palmoplantar keratoderma and curly hair. Indian Heart J. 1996;48:161-162.

    PubMed  CAS  Google Scholar 

  345. Carvajal-Huerta L. Epidermolytic palmoplantar keratoderma with woolly hair and dilated cardiomyopathy. J Am Acad Dermatol. 1998;39:418-421.

    Article  PubMed  CAS  Google Scholar 

  346. Norgett EE, Hatsell SJ, Carvajal-Huerta L, et al. Recessive mutation in desmoplakin disrupts desmoplakin-intermediate filament interactions and causes dilated cardiomyopathy, woolly hair and keratoderma. Hum Mol Genet. 2000;9:2761-2766.

    Article  PubMed  CAS  Google Scholar 

  347. Getsios S, Huen AC, Green KJ. Working out the strength and flexibility of desmosomes. Nat Rev Mol Cell Biol. 2004;5:271-281.

    Article  PubMed  CAS  Google Scholar 

  348. Smith EA, Fuchs E. Defining the interactions between intermediate filaments and desmosomes. J Cell Biol. 1998;141:1229-1241.

    Article  PubMed  CAS  Google Scholar 

  349. Alcalai R, Metzger S, Rosenheck S, Meiner V, Chajek-Shaul T. A recessive mutation in desmoplakin causes arrhythmogenic right ventricular dysplasia, skin disorder, and woolly hair. J Am Coll Cardiol. 2003;42:319-327.

    Article  PubMed  CAS  Google Scholar 

  350. Rampazzo A, Nava A, Malacrida S, et al. Mutation in human desmoplakin domain binding to plakoglobin causes a dominant form of arrhythmogenic right ventricular cardiomyopathy. Am J Hum Genet. 2002;71:1200-1206.

    Article  PubMed  CAS  Google Scholar 

  351. Bauce B, Basso C, Rampazzo A, et al. Clinical profile of four families with arrhythmogenic right ventricular cardiomyopathy caused by dominant desmoplakin mutations. Eur Heart J. 2005;26:1666-1675.

    Article  PubMed  CAS  Google Scholar 

  352. Norman M, Simpson M, Mogensen J, et al. Novel mutation in desmoplakin causes arrhythmogenic left ventricular cardiomyopathy. Circulation. 2005;112:636-642.

    Article  PubMed  CAS  Google Scholar 

  353. Jonkman MF, Pasmooij AM, Pasmas SG, et al. Loss of desmoplakin tail causes lethal acantholytic epidermolysis bullosa. Am J Hum Genet. 2005;77:653-660.

    Article  PubMed  CAS  Google Scholar 

  354. Whittock NV, Wan H, Morley SM, et al. Compound heterozygosity for non-sense and mis-sense mutations in desmoplakin underlies skin fragility/woolly hair syndrome. J Invest Dermatol. 2002;118:232-238.

    Article  PubMed  CAS  Google Scholar 

  355. Gerull B, Heuser A, Wichter T, et al. Mutations in the desmosomal protein plakophilin-2 are common in arrhythmogenic right ventricular cardiomyopathy. Nat Genet. 2004;36:1162-1164.

    Article  PubMed  CAS  Google Scholar 

  356. Schwarz MA, Owaribe K, Kartenbeck J, Franke WW. Desmosomes and hemidesmosomes: constitutive molecular components. Annu Rev Cell Biol. 1990;6:461-491.

    Article  PubMed  CAS  Google Scholar 

  357. Awad MM, Dalal D, Cho E, et al. DSG2 mutations contribute to arrhythmogenic right ventricular dysplasia/cardiomyopathy. Am J Hum Genet. 2006;79:136-142.

    Article  PubMed  CAS  Google Scholar 

  358. Pilichou K, Nava A, Basso C, et al. Mutations in desmoglein-2 gene are associated with arrhythmogenic right ventricular cardiomyopathy. Circulation. 2006;113:1171-1179.

    Article  PubMed  CAS  Google Scholar 

  359. Heuser A, Plovie ER, Ellinor PT, et al. Mutant desmocollin-2 causes arrhythmogenic right ventricular cardiomyopathy. Am J Hum Genet. 2006;79:1081-1088.

    Article  PubMed  CAS  Google Scholar 

  360. Syrris P, Ward A, Evans A, et al. Arrhythmogenic right ventricular dysplasia/cardiomyopathy associated with mutations in the desmosomal gene desmocollin-2. Am J Hum Genet. 2006;79:978-984.

    Article  PubMed  CAS  Google Scholar 

  361. Beffagna G, De Bortoli M, Nava A, et al. Missense mutations in desmocollin-2 N-terminus, associated with arrhythmogenic right ventricular cardiomyopathy, affect intracellular localization of desmocollin-2 in vitro. BMC Med Genet. 2007;8:65.

    Article  PubMed  CAS  Google Scholar 

  362. Corrado D, Basso C, Thiene G, et al. Spectrum of clinicopathologic manifestations of arrhythmogenic right ventricular cardiomyopathy/dysplasia: a multicenter study. J Am Coll Cardiol. 1997;30:1512-1520.

    Article  PubMed  CAS  Google Scholar 

  363. Nemec J, Edwards BS, Osborn MJ, Edwards WD. Arrhythmogenic right ventricular dysplasia masquerading as dilated cardiomyopathy. Am J Cardiol. 1999;84:237-239, A9.

    Google Scholar 

  364. De Pasquale CG, Heddle WF. Left sided arrhythmogenic ventricular dysplasia in siblings. Heart. 2001;86:128-130.

    Article  PubMed  Google Scholar 

  365. Michalodimitrakis M, Papadomanolakis A, Stiakakis J, Kanaki K. Left side right ventricular cardiomyopathy. Med Sci Law. 2002;42:313-317.

    PubMed  CAS  Google Scholar 

  366. Suzuki H, Sumiyoshi M, Kawai S, et al. Arrhythmogenic right ventricular cardiomyopathy with an initial manifestation of severe left ventricular impairment and normal contraction of the right ventricle. Jpn Circ J. 2000;64:209-213.

    Article  PubMed  CAS  Google Scholar 

  367. Buja G, Estes N III, Wichter T, Corrado D, Marcus F, Thiene G. Arrhythmogenic Right Ventricular Cardiomyopathy/Dysplasia: Risk Stratification and Therapy. Prog Cardiovasc Dis. 2008;50(4):282-293.

    Article  PubMed  Google Scholar 

  368. Protonotarios N, Tsatsopoulou A. Naxos disease and Carvajal syndrome: Cardiocutaneous disorders that highlight the pathogenesis and broaden the spectrum of arrhythmogenic right ventricular cardiomyopathy. Cardiovasc Pathol. 2004;13:185-194.

    Article  PubMed  CAS  Google Scholar 

  369. Kaplan SR, Gard JJ, Carvajal-Huerta L, Ruiz-Cabezas JC, Thiene G, Saffitz JE. Structural and molecular pathology of the heart in Carvajal syndrome. Cardiovasc Pathol. 2004;13:26-32.

    Article  PubMed  CAS  Google Scholar 

  370. Duran M, Avellan F, Carvajal L. Dilated cardiomyopathy in the ectodermal dysplasia. Electro-echocardiographic observations in palmoplantar keratoderma with woolly hair. Rev Esp Cardiol. 2000;53:1296-1300.

    PubMed  CAS  Google Scholar 

  371. Kaplan SR, Gard JJ, Protonotarios N, et al. Remodeling of myocyte gap junctions in arrhythmogenic right ventricular cardiomyopathy due to a deletion in plakoglobin (Naxos disease). Heart Rhythm. 2004;1:3-11.

    Article  PubMed  Google Scholar 

  372. Lemery R, Brugada P, Bella PD, et al. Nonischemic ventricular tachycardia. Clinical course and long-term follow-up in patients without clinically overt heart disease. Circulation. 1989;79:990-999.

    Google Scholar 

  373. Buxton AE, Waxman HL, Marchlinski FE, et al. Right ventricular tachycardia: clinical and electrophysiologic characteristics. Circulation. 1983;68:917-927.

    Article  PubMed  CAS  Google Scholar 

  374. Wilber DJ, Baerman J, Olshansky B, et al. Adenosine-sensitive ventricular tachycardia: clinical characteristics and response to catheter ablation. Circulation. 1993;87:126-134.

    Article  PubMed  CAS  Google Scholar 

  375. Nava A, Bauce B, Basso C, et al. Clinical profile and long-term follow-up of 37 families with arrhythmogenic right ventricular cardiomyopathy. J Am Coll Cardiol. 2000;36:2226-2233.

    Article  PubMed  CAS  Google Scholar 

  376. Ott P, Marcus FI, Sobonya RE, et al. Cardiac sarcoidosis masquerading as right ventricular dysplasia. Pacing Clin Electrophysiol. 2003;26:1498-1503.

    Article  PubMed  Google Scholar 

  377. Shiraishi J, Tatsumi T, Shimoo K, et al. Cardiac sarcoidosis mimicking right ventricular dysplasia. Circ J. 2003;67:169-171.

    Article  PubMed  Google Scholar 

  378. Lemola K, Brunckhorst C, Helfenstein U, et al. Predictors of adverse outcome in patients with arrhythmogenic right ventricular dysplasia/cardiomyopathy: long-term experience of a tertiary care center. Heart. 2005;91:1167-1172.

    Article  PubMed  CAS  Google Scholar 

  379. Fontaine G, Fontaliran F, Frank R, et al. Causes of sudden death in athletes. Arch Mal Coeur Vaiss. 1989;82:107-111.

    PubMed  Google Scholar 

  380. Tabib A, Miras A, Taniere P, Loire R. Undetected cardiac lesions cause unexpected sudden cardiac death during occasional sport activity. A report of 80 cases. Eur Heart J. 1999;20:900-903.

    Google Scholar 

  381. Corrado D, Thiene G, Nava A, et al. Sudden death in young competitive athletes: clinicopathologic correlations in 22 cases. Am J Med. 1990;89:588-596.

    Article  PubMed  CAS  Google Scholar 

  382. Furlanello F, Bertoldi A, Dallago M, et al. Cardiac arrest and sudden death in competitive athletes with arrhythmogenic right ventricular dysplasia. Pacing Clin Electrophysiol. 1998;21(1 pt 2):331-335.

    Article  PubMed  CAS  Google Scholar 

  383. Heidbuchel H, Hoogsteen J, Fagard R, et al. High prevalence of right ventricular involvement in endurance athletes with ventricular arrhythmias. Role of an electrophysiologic study in risk stratification. Eur Heart J. 2003;24:1473-1480.

    Article  PubMed  Google Scholar 

  384. Biffi A, Pelliccia A, Verdile L, et al. Long-term clinical significance of frequent and complex ventricular tachyarrhythmias in trained athletes. J Am Coll Cardiol. 2002;40:446-452.

    Article  PubMed  Google Scholar 

  385. Henriksen E, Kangro T, Jonason T, et al. An echocardiographic study of right ventricular adaptation to physical exercise in elite male orienteers. Clin Physiol. 1998;18:498-503.

    Article  PubMed  CAS  Google Scholar 

  386. Sciomer S, Vitarelli A, Penco M, et al. Anatomico-functional changes in the right ventricle of the athlete. Cardiologia. 1998;43:1215-1220.

    PubMed  CAS  Google Scholar 

  387. F.I. Marcus; W.J. McKenna; D. Sherrill; et al. Diagnosis of Arrhythmogenic Right Ventricular Cardiomyopathy/Dysplasia. Proposed Modification of the Task Force Criteria. Circulation. 2010;121(13):1533-1541.

    Article  PubMed  Google Scholar 

  388. Peters S, Trummel M. Diagnosis of arrhythmogenic right ventricular dysplasia-cardiomyopathy: value of standard ECG revisited. Ann Noninvasive Electrocardiol. 2003;8:238-245.

    Article  PubMed  Google Scholar 

  389. Fontaine G, Fontaliran F, Hebert JL, et al. Arrhythmogenic right ventricular dysplasia. Annu Rev Med. 1999;50:17-35.

    Article  PubMed  CAS  Google Scholar 

  390. Jaoude SA, Leclercq JF, Coumel P. Progressive ECG changes in arrhythmogenic right ventricular disease. Evidence for an evolving disease. Eur Heart J. 1996;17:1717-1722.

    Google Scholar 

  391. Turrini P, Angelini A, Thiene G, et al. Late potentials and ventricular arrhythmias in arrhythmogenic right ventricular cardiomyopathy. Am J Cardiol. 1999;83:1214-1219.

    Article  PubMed  CAS  Google Scholar 

  392. Kinoshita O, Fontaine G, Rosas F, et al. Time and frequency-domain analyses of the signal-averaged ECG in patients with arrhythmogenic right ventricular dysplasia. Circulation. 1995;91:715-721.

    Article  PubMed  CAS  Google Scholar 

  393. Burke AP, Robinson S, Radentz S, et al. Sudden death in right ventricular dysplasia with minimal gross abnormalities. J Forensic Sci. 1999;44:438-443.

    PubMed  CAS  Google Scholar 

  394. Marcus FI, Fontaine GH, Frank R, et al. Long-term follow-up in patients with arrhythmogenic right ventricular disease. Eur Heart J. 1989;10(suppl D):68-73.

    Google Scholar 

  395. Wichter T, Borggrefe M, Haverkamp W, et al. Efficacy of antiarrhythmic drugs in patients with arrhythmogenic right ventricular disease. Results in patients with inducible and noninducible ventricular tachycardia. Circulation. 1992;86:29-37.

    Article  PubMed  CAS  Google Scholar 

  396. Leclercq JF, Potenza S, Maison-Blanche P, et al. Determinants of spontaneous occurrence of sustained monomorphic ventricular tachycardia in right ventricular dysplasia. J Am Coll Cardiol. 1996;28:720-724.

    Article  PubMed  CAS  Google Scholar 

  397. Peters S, Peters H, Thierfelder L. Risk stratification of sudden cardiac death and malignant ventricular arrhythmias in right ventricular dysplasia-cardiomyopathy. Int J Cardiol. 1999;71:243-250.

    Article  PubMed  CAS  Google Scholar 

  398. Turrini P, Corrado D, Basso C, et al. Dispersion of ventricular depolarisation-repolarisation: a non-invasive marker for risk stratification in arrhythmogenic right ventricular cardiomyopathy. Circulation. 2001;103:3075-3080.

    Article  PubMed  CAS  Google Scholar 

  399. Turrini P, Corrado D, Basso C, et al. Noninvasive risk stratification in arrhythmogenic right ventricular cardiomyopathy. Ann Noninvasive Electrocardiol. 2003;8:161-169.

    Article  PubMed  Google Scholar 

  400. Tavernier R, Gevaert S, De Sutter J, et al. Long term results of cardioverter-defibrillator implantation in patients with right ventricular dysplasia and malignant ventricular tachyarrhythmias. Heart. 2001;85:53-56.

    Article  PubMed  CAS  Google Scholar 

  401. Link MS, Wang PJ, Haugh CJ, et al. Arrhythmogenic right ventricular dysplasia: clinical results with implantable cardioverter defibrillators. J Interv Card Electrophysiol. 1997;1:41-48.

    Article  PubMed  CAS  Google Scholar 

  402. Wichter T, Paul M, Eckardt L, et al. Arrhythmogenic right ventricular cardiomyopathy. Antiarrhythmic drugs, catheter ablation, or ICD? Herz. 2005;30:91-101.

    Google Scholar 

  403. Blomström-Lundqvist C, Sabel KG, Olsson SB. A long term follow up of 15 patients with arrhythmogenic right ventricular dysplasia. Br Heart J. 1987;58(5):477-488.

    Article  PubMed  Google Scholar 

  404. Pinamonti B, Sinagra G, Salvi A, et al. Left ventricular involvement in right ventricular dysplasia. Am Heart J. 1992;123(3):711-724.

    Article  PubMed  CAS  Google Scholar 

  405. Peters S, Peters H, Thierfelder L. Heart failure in arrhythmogenic right ventricular dysplasia-cardiomyopathy. Int J Cardiol. 1999;71(3):251-256.

    Article  PubMed  CAS  Google Scholar 

  406. Corrado D, Leoni L, Link MS, et al. Implantable cardioverter-defibrillator therapy for prevention of sudden death in patients with arrhythmogenic right ventricular cardiomyopathy/dysplasia. Circulation. 2003;108(25):3084-3091.

    Article  PubMed  Google Scholar 

  407. Hulot JS, Jouven X, Empana JP, et al. Natural history and risk stratification of arrhythmogenic right ventricular dysplasia/cardiomyopathy. Circulation. 2004;110:1879-1884.

    Article  PubMed  Google Scholar 

  408. Peters S. Age related dilatation of the right ventricle in arrhythmogenic right ventricular dysplasia-cardiomyopathy. Int J Cardiol. 1996;56(2):163-167.

    Article  PubMed  CAS  Google Scholar 

  409. Marcus F, Nava A, Thiene G, et al. Arrhythmogenic RV Cardiomyopathy/Dysplasia, Recent Advances. Italia: Springer; 2007.

    Google Scholar 

  410. Pinamonti B, Miani D, Sinagra G, et al. Familial right ventricular dysplasia with biventricular involvement and inflammatory infiltration. Heart Muscle Disease Study Group. Heart. 1996;76(1):66-69.

    Article  PubMed  CAS  Google Scholar 

  411. Tonet JL, Castro-Miranda R, Iwa T, et al. Frequency of supraventricular tachyarrhythmias in arrhythmogenic right ventricular dysplasia. Am J Cardiol. 1991;67(13):1153.

    Article  PubMed  CAS  Google Scholar 

  412. Wlodarska EK, Wozniak O, Konka M, et al. Thromboembolic complications in patients with arrhythmogenic right ventricular dysplasia/cardiomyopathy. Europace. 2006;8(8):596-600.

    Article  PubMed  Google Scholar 

  413. Antonini-Canterin F, Sandrini R, Pavan D, et al. Right ventricular thrombosis in arrhythmogenic cardiomyopathy. A case report. Ital Heart J. 2000;1:415-418.

    CAS  Google Scholar 

  414. Chachques JC, Argyriadis PG, Fontaine G, et al. Right ventricular cardiomyoplasty: 10-year follow-up. Ann Thorac Surg. 2003;75:1464-1468.

    Article  PubMed  Google Scholar 

  415. Takagaki M, Ishino K, Kawada M, et al. Total right ventricular exclusion improves left ventricular function in patients with end-stage congestive right ventricular failure. Circulation. 2003;9:108.

    Google Scholar 

  416. Motta P, Mossad E, Savage R. Right ventricular exclusion surgery for arrhythmogenic right ventricular dysplasia with cardiomyopathy. Anesth Analg. 2003;96(6):1598-1602.

    Article  PubMed  Google Scholar 

  417. Pawel BR, de Chadarevian JP, Wolk JH, et al. Sudden death in childhood due to right ventricular dysplasia: report of two cases. Pediatr Pathol. 1994;14:987-995.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margherita Calcagnino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer London

About this chapter

Cite this chapter

Calcagnino, M., McKenna, W.J. (2010). Inherited Myocardial Diseases. In: Henein, M. (eds) Heart Failure in Clinical Practice. Springer, London. https://doi.org/10.1007/978-1-84996-153-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-153-0_2

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-152-3

  • Online ISBN: 978-1-84996-153-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics