Skip to main content

Part of the book series: Springer Series in Advanced Manufacturing ((SSAM))

  • 1674 Accesses

Abstract

This chapter discusses some intelligent techniques for the solution of the safety stock optimization problem in networked manufacturing systems. These solutions techniques are based on normal approximation models for the involved critical safety stock parameters. The first and second sections introduce the issue of multi-echelon inventory control and review the related literature. The next three sections discuss safety stock optimization in distribution systems, assembly systems and then in generic networked manufacturing systems. The proposed approximation models are tested on small example systems and are benchmarked with results obtained from discrete-event simulation. As the various simulations show, these proposed approximations prove to be rather conservative and provide good upper bounds on the required system safety stocks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Axsäter S (1993) Continuous review policies for multi-level inventory systems with stochastic demand. In: Graves SC, Rinnooy Kan AHG, Zipkin PH (eds) Logistics of production and inventory, chapter 4, Elsevier Science Publishers, Amsterdam

    Google Scholar 

  • Axsäter S (2000) Inventory control. Kluwer Academic Publishers, Boston

    Google Scholar 

  • Buzby BR, Campbell GM, Webb I (1999) Cyclical schedules for one-warehouse, multi-retailer systems with dynamic demands. J. Oper. Res. Soc., 50:850–856

    MATH  Google Scholar 

  • Campbell GM, Mabert V (1991) Cyclical schedules for capacitated lot sizing with dynamic demands. Mgmt. Sci., 37(4):409–427

    Article  Google Scholar 

  • Campbell GM (1996) Cyclic assembly schedules for dynamic demands. IIE Trans., 28(8):643–651

    Google Scholar 

  • Chen F, Drezner Z, Ryan JK (2000) Quantifying the bullwhip effect in a simple supply chain: the impact of forecasting, lead times and information. Mgmt. Sci., 46(3):436–443

    Article  Google Scholar 

  • Clark AJ, Scarf H (1960) Optimal policies for a multi-echelon inventory problem. Mgmt. Sci., 6: 475–490

    Article  Google Scholar 

  • Crowston WB, Wagner MH, Williams JF (1973) Economic lot size determination in multi-stage assembly systems. Mgmt. Sci., 19(5):517–527

    Article  MATH  Google Scholar 

  • Crowston WB, Wagner MH (1973) Dynamic lot size models for multi-stage assembly systems. Mgmt. Sci., 20(1):14–21

    Article  MATH  Google Scholar 

  • de Kok AG (2000) Capacity allocation and outsourcing in a process industry. Int. J. Prod. Econ., 68:229–239

    Article  Google Scholar 

  • de Kok AG (1989) A moment-iteration method for approximating the waiting time characteristics of the GI/G/1 queue. Prob. Eng. Info. Sci., 3:273–287

    Article  MATH  Google Scholar 

  • de Kok TG, Visschers JWCH (1999) Analysis of assembly systems with service level constraints. Int. J. Prod. Econ., 59:313–326

    Article  Google Scholar 

  • de Kok TG, Fransoo JC (2003) Planning supply chain operations: definition and comparison of planning concepts. In: de Kok AG, Graves SC (eds) Supply chain management: design, coordination and operation, chapter 12, Elsevier Publishing Company

    Google Scholar 

  • de Kok AG, Graves SC (2003) Supply chain management: design, coordination and operations. Elsevier Publisher

    Google Scholar 

  • de Kok TG, Janssen F, van Doremalen J et al. (2005) Philips electronics synchronizes its supply chain to end the bullwhip effect. Interfaces, 35(1):37–48

    Article  Google Scholar 

  • Desmet B, Aghezzaf EH, Vanmaele H (2009a) A normal approximation model for safety stock optimization in a two-echelon distribution system. J. Oper. Res. Soc., January 7, doi:10.1057/jors.2008.150

    Google Scholar 

  • Desmet B, Aghezzaf EH, Vanmaele H (2009b) Safety stock optimization in two-echelon assembly systems: normal approximation models. Working paper, University of Ghent (submitted to Int. J. Prod. Res).

    Google Scholar 

  • Deuermeyer B, Schwarz LB (1981) A model for the analysis of system service level in warehouse-retailer distribution systems: the identical retailer case. In: Schwartz LB (ed) Multilevel production/inventory control systems: theory and practice, 163–193, Elsevier Publishing Company

    Google Scholar 

  • Diks EB, de Kok AG (1999) Computational results for the control of a divergent N-echelon inventory system. Int. J. Prod. Econ., 59(1–3):327–336

    Article  Google Scholar 

  • Ettl M, Feigin GE, Lin GY et al. (2000) A supply network model with base-stock control and service requirements. Oper. Res., 48(2):216–232

    Article  Google Scholar 

  • Federgruen A, Queyranne M, Zheng Y (1992) Simple power-of-two policies are close to optimal in a general class of production/distribution networks with general joint setup costs. Math. of Oper. Res., 17(4):951–963

    Article  MATH  MathSciNet  Google Scholar 

  • Federgruen A, Zheng YS (1995) Efficient algorithms for finding optimal power-of-two policies for production/distribution systems with general joint setup costs. Oper. Res., 43(3):458–470

    Article  MATH  MathSciNet  Google Scholar 

  • Federgruen A, Zheng YS (1993) Optimal power-of-two replenishment strategies in capacitated general production/distribution networks. Mgmt. Sci., 39(6):710–727

    Article  MATH  Google Scholar 

  • Graves SC (1988) Safety stocks in Manufacturing Systems. J. Manuf. Oper. Mgmt., 1: 67–101

    MathSciNet  Google Scholar 

  • Graves SC, Willems SP (1996) Strategic safety stock placement in supply chains. In: Proceedings of the 1996 MSOM conference, Dartmouth College, Hanover NH, June, pp.. 299–304

    Google Scholar 

  • Graves SC, Willems SP (2000) Optimizing strategic safety stock placement in supply chains. Manuf. Ser. Oper. Mgmt., 2:68–83

    Article  Google Scholar 

  • Graves SC, Willems SP (2003) Supply chain design–safety stock placement and supply chain configuration. In: de Kok AG, Graves SC (eds) Supply Chain Management: Design, Coordination and Operation, chapter 3, Elsevier Science Publishers, Amsterdam

    Google Scholar 

  • Groenevelt H, Johanssen J, Lederer P (1992) Cyclic planning. Available at: http://www.ssb.rochester.edu/fac/lederer/SimonFacultyWeb/LedererPage.htm

    Google Scholar 

  • Holland W, Sodhi MS (2004) Quantifying the effect of batch size and order errors on the bullwhip effect using simulation. Int. J. Logist.: Res. Appl., 7(3):251–261

    Article  Google Scholar 

  • Inderfurth K, Minner S (1998) Safety stocks in multi-stage inventory systems under different service measures. Eur. J. Oper. Res., 106:57–73

    Article  Google Scholar 

  • Kaplan U, Türkay M, Karasözen B et al. (2009) Optimization of supply chain systems with price elasticity of demand. J. Comp. doi: http://www3.iam.metu.edu.tr/bulent/makaleler/2009/ijoctemv.pdf

    Google Scholar 

  • Köchel P, Nieländer U (2005) Simulation-based optimization of multi-echelon inventory systems. Int. J. Prod. Econ., 93–94 (8):505–513

    Article  Google Scholar 

  • Lee HL, Billington C (1993) Material management in decentralized supply chains. Oper. Res., 37:835–847

    Article  Google Scholar 

  • Lee HL, Padmanabhan V, Whang S (1997a) The bullwhip effect in supply chains. MIT Sloan Mgmt. Rev. Spring

    Google Scholar 

  • Lee HL, Padmanabhan V, Whang S (1997b) Information distortion in a supply chain: the bullwhip effect. Mgmt. Sci., 43(4):546–558

    Article  MATH  Google Scholar 

  • Lin G, Ettl M, Buckley S et al. (2000) Extended-enterprise supply-chain management at IBM personal systems group and other divisions. Interfaces, 30 (1):7–25

    Article  Google Scholar 

  • McCullen P, Towill D (2002). Diagnosis and reduction of bullwhip in supply chains. Supp. Chain Mgmt. (An Int. J.), 7(3):164–179

    Article  Google Scholar 

  • Muckstadt JA, Roundy RO (1993) Analysis of multistage production systems. In: Graves SC, Rinnooy Kan AHG, Zipkin PH (eds) Logistics of production and inventory, chapter 2, Elsevier Science Publishers, Amsterdam

    Google Scholar 

  • Muckstadt JA (2005) Analysis and algorithms for service parts supply chains. Springer publisher

    Google Scholar 

  • Roundy R (1985) 98%-effective integer-ratio lot-sizing for one-warehouse multi-retailer systems. Mgmt. Sci., 31(11):1416–1430

    Article  MATH  Google Scholar 

  • Roundy R (1986) 98%-effective integer-ratio lot-sizing for a multi-product, multi-stage production/inventory system. Math. Oper. Res., 11(4):699–727

    Article  MATH  MathSciNet  Google Scholar 

  • Roundy R (1989) Rounding off to powers of two in continuous relaxations of capacitated lot sizing problems. Mgmt. Sci., 35(12):1433–1442

    Article  MATH  MathSciNet  Google Scholar 

  • Schwarz LB, Deuermeyer BL, Badinelli RD (1985) Fill-rate optimization in a one-warehouse nidentical retailer distribution system. Mgmt. Sci., 31(4):488–498

    Article  MathSciNet  Google Scholar 

  • Sherbrooke CC (2004) Optimal inventory modeling of systems: multi-echelon techniques. Kluwer Academic Publishers

    Google Scholar 

  • Slack N, Chambers S, Johnston R (2001) Operations management. Pearson Education

    Google Scholar 

  • Swaminathan JM, Smith SF, Sadeh NM (1998) Modeling supply chain dynamics: a multi-agent approach. Dec. Sci., 29(3):607–632

    Article  Google Scholar 

  • Taylor DH (1999) Measurement and analysis of demand amplification across the supply chain. Int. J. Logist. Mgmt., 10(2):55–70

    Article  Google Scholar 

  • Tayur SR (1993) Computing the optimal policy for capacitated inventory models. Comm. Stoch. Models, 9:585–598

    Article  MATH  MathSciNet  Google Scholar 

  • Van den Broecke F, Van Landeghem H, Aghezzaf E (2003) An application of cyclical master production scheduling in a multi-stage, multi-product environment. Prod. Plan. Control, 16(8):796–809

    Article  Google Scholar 

  • Van Houtum GJ (2006) Multi-echelon production/inventory systems: optimal policies, heuristics, algorithms. INFORMS Tutorial in Oper. Res. Series, 163–199

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E.-H. Aghezzaf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Limited

About this chapter

Cite this chapter

Desmet, B., Aghezzaf, EH., Vanmaele, H. (2010). Intelligent Techniques for Safety Stock Optimization in Networked Manufacturing Systems. In: Benyoucef, L., Grabot, B. (eds) Artificial Intelligence Techniques for Networked Manufacturing Enterprises Management. Springer Series in Advanced Manufacturing. Springer, London. https://doi.org/10.1007/978-1-84996-119-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-119-6_13

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-118-9

  • Online ISBN: 978-1-84996-119-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics