Advertisement

Analyzing Real Vector Fields with Clifford Convolution and Clifford–Fourier Transform

  • Wieland ReichEmail author
  • Gerik Scheuermann
Chapter

Abstract

Postprocessing in computational fluid dynamics and processing of fluid flow measurements need robust methods that can deal with scalar and vector fields. While image processing of scalar data is a well-established discipline, there is a lack of similar methods for vector data. This paper surveys a particular approach defining convolution operators on vector fields using geometric algebra. This includes a corresponding Clifford–Fourier transform including a convolution theorem. Finally, a comparison is tried with related approaches for a Fourier transform of spatial vector or multivector data. In particular, we analyze the Fourier series based on quaternion holomorphic functions of Gürlebeck et al. (Funktionentheorie in der Ebene und im Raum, Birkhäuser, Basel, 2006), the quaternion Fourier transform of Hitzer (Proceedings of Function Theories in Higher Dimensions, 2006) and the biquaternion Fourier transform of Sangwine et al. (IEEE Trans. Signal Process. 56(4),1522–1531, 2007).

Keywords

Fourier Series Clifford Algebra Convolution Operator Geometric Algebra Convolution Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Batchelor, G.K.: An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge (1967) zbMATHGoogle Scholar
  2. 2.
    Bülow, T., Felsberg, M., Sommer, G.: Non-commutative hypercomplex Fourier transforms of multidimensional signals. In: Geometric Computing with Clifford Algebra, pp. 187–207. Springer, Berlin (2001) Google Scholar
  3. 3.
    Cibura, C.: Geometric algebra approach to fluid dynamics. Presentation at AGACSE 2008 Google Scholar
  4. 4.
    Dorst, L., Fontijne, D., Mann, S.: Geometric Algebra for Computer Science. Morgan Kaufmann, San Mateo (2007) Google Scholar
  5. 5.
    Ebling, J., Scheuermann, G.: Clifford convolution and pattern matching on vector fields. In: IEEE Visualization 2003 Proceedings, pp. 193–200. IEEE Comput. Soc., Los Alamitos (2003) Google Scholar
  6. 6.
    Ebling, J., Scheuermann, G.: Clifford Fourier transform on vector fields. IEEE Trans. Vis. Comput. Graph. 11(4), 469–479 (2005) CrossRefGoogle Scholar
  7. 7.
    Ebling, J., Scheuermann, G., van der Wall, B.G.: Analysis and visualization of 3-c piv images from hart ii using image processing methods. In: Brodlie, K.W., Duke, D.J., Joy, K.I. (eds.) EUROGRAPHICS—IEEE VGTC Symposium on Visualization 2005 Proceedings, pp. 161–168. IEEE Comput. Soc., Los Alamitos (2005) Google Scholar
  8. 8.
    Granlund, G.H., Knutsson, H.: Signal Processing for Computer Vision. Kluwer Academic, Dordrecht (1995) Google Scholar
  9. 9.
    Gürlebeck, K., Habetha, K., Sprößig, W.: Funktionentheorie in der Ebene und im Raum. Birkhäuser, Basel (2006) zbMATHGoogle Scholar
  10. 10.
    Hauser, H., Hagen, H., Theisel, H.: Topology-Based Methods in Visualization. Springer, Berlin (2007) zbMATHCrossRefGoogle Scholar
  11. 11.
    Heiberg, E.B., Ebbers, T., Wigström, L., Karlsson, M.: Three dimensional flow characterization using vector pattern matching. IEEE Trans. Vis. Comput. Graph. 9(3), 313–319 (2003) CrossRefGoogle Scholar
  12. 12.
    Hestenes, D.: New Foundations for Classical Mechanics. Kluwer Academic, Dordrecht (1986) zbMATHGoogle Scholar
  13. 13.
    Hitzer, E.: Quaternion Fourier transform on quaternion fields and generalizations. In: Proceedings of Function Theories in Higher Dimensions (2006) Google Scholar
  14. 14.
    Hitzer, E., Mawardi, B.: Clifford Fourier transform on multivector fields and uncertainty principles for dimensions n=2 (mod 4) and n=3 (mod 4). In: Proceedings of 7th Int. Conf. on Clifford Algebras and their Applications (2005) Google Scholar
  15. 15.
    Jähne, B.: Digitale Bildverarbeitung, 5th edn. Springer, Berlin (2000) Google Scholar
  16. 16.
    Raffel, M., et al.: Recording and evaluation methods of piv investigations on a helicopter rotor model. Exp. Fluids 36, 146–156 (2004) CrossRefGoogle Scholar
  17. 17.
    Roth, M.: Automatic extraction of vortex core lines and other line-type features for scientific visualization. Ph.D. thesis, ETH Zürich (2000) Google Scholar
  18. 18.
    Sangwine, S.J., Ell, T.: Hypercomplex Fourier transforms of color images. IEEE Trans. Image Process. 16, 22–35 (2007) CrossRefMathSciNetGoogle Scholar
  19. 19.
    Sangwine, S.J., Le Bihan, N., Said, S.: Fast complexified Fourier transform. IEEE Trans. Signal Process. 56(4), 1522–1531 (2007) Google Scholar
  20. 20.
    Scheuermann, G., Tricoche, X.: Topological methods in flow visualization. In: The Visualization Handbook, pp. 341–358. Elsevier, Amsterdam (2005) CrossRefGoogle Scholar
  21. 21.
    Schroeder, W., Martin, K.W., Lorensen, B.: The Visualization Toolkit, 2nd edn. Prentice-Hall, New York (1998) Google Scholar
  22. 22.
    Versteeg, H.K., Malalasekera: An Introduction to Computational Fluid Dynamics—The Finite Volume Method. Pearson Education, Upper Saddle River (2007) Google Scholar

Copyright information

© Springer-Verlag London 2010

Authors and Affiliations

  1. 1.Institut fuer InformatikUniversität LeipzigLeipzigGermany

Personalised recommendations