The Cylindrical Fourier Transform

  • Fred Brackx
  • Nele De SchepperEmail author
  • Frank Sommen


The aim of this paper is to show the application potential of the cylindrical Fourier transform, which was recently devised as a new integral transform within the context of Clifford analysis. Next to the approximation approach where, using density arguments, the spectrum of various types of functions and distributions may be calculated starting from the cylindrical Fourier images of the L 2-basis functions in ℝ m , direct computation methods are introduced for specific distributions supported on the unit sphere, and an illustrative example is worked out.


Dirac Operator Image Space Clifford Algebra Monogenic Function Hermite Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brackx, F., Delanghe, R., Sommen, F.: Clifford Analysis. Pitman Publishers, London (1982) zbMATHGoogle Scholar
  2. 2.
    Brackx, F., De Schepper, N., Sommen, F.: The Clifford–Fourier transform. J. Fourier Anal. Appl. (2005). doi: 10.1007/s00041-005-4079-9 Google Scholar
  3. 3.
    Brackx, F., De Schepper, N., Sommen, F.: The two-dimensional Clifford–Fourier transform. J. Math. Imaging Vis. (2006). doi: 10.1007/s10851-006-3605-y Google Scholar
  4. 4.
    Brackx, F., De Schepper, N., Sommen, F.: The cylindrical Fourier spectrum of an L 2-basis consisting of generalized Clifford–Hermite functions. In: Simos, T.E., Psihoyios, G., Tsitouras, Ch. (eds.) Numerical Analysis and Applied Mathematics, AIP Conference Proceedings, Kos, Greece, pp. 686–690 (2008) Google Scholar
  5. 5.
    Brackx, F., De Schepper, N., Sommen, F.: The Fourier transform in Clifford analysis. Adv. Imaging Electron Phys. (2009). doi: 10.1016/S1076-5670(08)01402-x Google Scholar
  6. 6.
    Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher Transcendental Functions. vol. 1. McGraw-Hill, New York (1953) Google Scholar
  7. 7.
    Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products. Academic Press, San Diego (1980) zbMATHGoogle Scholar

Copyright information

© Springer-Verlag London 2010

Authors and Affiliations

  1. 1.Clifford Research Group, Department of Mathematical AnalysisGhent UniversityGentBelgium

Personalised recommendations