Advertisement

Engineering Graphics in Geometric Algebra

  • Alyn RockwoodEmail author
  • Dietmar Hildenbrand
Chapter

Abstract

We illustrate the suitability of geometric algebra for representing structures and developing algorithms in computer graphics, especially for engineering applications. A number of example applications are reviewed. Geometric algebra unites many underpinning mathematical concepts in computer graphics such as vector algebra and vector fields, quaternions, kinematics and projective geometry, and it easily deals with geometric objects, operations, and transformations. Not only are these properties important for computational engineering, but also for the computational point-of-view they provide. We also include the potential of geometric algebra for optimizations and highly efficient implementations.

Keywords

Computer Graphic Geometric Algebra Trifocal Tensor Conformal Geometric Algebra Robot Head 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bayro-Corrochano, E.: Geometric neural computing. IEEE Trans. Neural Netw. 12(5), 968–986 (2001) CrossRefGoogle Scholar
  2. 2.
    Bayro-Corrochano, E.: Robot perception and action using conformal geometry. In: Bayro-Corrochano, E. (ed.) The Handbook of Geometric Computing. Applications in Pattern Recognition, Computer Vision, Neurocomputing and Robotics, pp. 405–458. Springer, Heidelberg (2005). Chap. 13 Google Scholar
  3. 3.
    Bayro-Corrochano, E., Banarer, V.: A geometric approach for the theory and applications of 3d projective invariants. J. Math. Imaging Vis. 16, 131–154 (2001) CrossRefMathSciNetGoogle Scholar
  4. 4.
    Bayro-Corrochano, E., Sobczyk, G. (eds.): Geometric Algebra with Applications in Science and Engineering. Birkhäuser, Basel (2001) zbMATHGoogle Scholar
  5. 5.
    Bayro-Corrochano, E., Zamora-Esquivel, J.: Inverse kinematics, fixation and grasping using conformal geometric algebra. In: IROS 2004, September 2004, Sendai, Japan (2004) Google Scholar
  6. 6.
    Bayro-Corrochano, E., Zamora-Esquivel, J.: Kinematics and differential kinematics of binocular robot heads. In: Proceedings of ICRA Conference, Orlando, USA (2006) Google Scholar
  7. 7.
    Bayro-Corrochano, E., Daniilidis, K., Sommer, G.: Motor algebra for 3d kinematics: the case of the hand-eye calibration. J. Math. Imaging Vis. 13, 79–99 (2000) zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Bayro-Corrochano, E., Vallejo, R., Arana-Daniel, N.: Geometric preprocessing, geometric feedforward neural networks and Clifford support vector machines for visual learning. Neurocomputing 67, 54–105 (2005). Special issue CrossRefGoogle Scholar
  9. 9.
    Brendel, E., Kalbe, T., Hildenbrand, D., Schaefer, M.: Simulation of elastic rods using conformal geometric algebra. In: International Symposium on Frontiers of Computational Science, Nagoya, Japan (2008) Google Scholar
  10. 10.
    Buchholz, S., Hitzer, E.M.S., Tachibana, K.: Optimal learning rates for Clifford neurons. In: International Conference on Artificial Neural Networks, vol. 1, pp. 864–873, Porto, Portugal (2007) Google Scholar
  11. 11.
    Buchholz, S., Hitzer, E.M.S., Tachibana, K.: Coordinate independent update formulas for versor Clifford neurons. In: Proc. Joint 4th International Conference on Soft Computing and Intelligent Systems and 9th International Symposium on Advanced Intelligent Systems (SCIS and ISIS 2008), Nagoya, Japan (2008) Google Scholar
  12. 12.
    Cameron, J., Lasenby, J.: Oriented conformal geometric algebra. In: Proceedings of ICCA7 (2005) Google Scholar
  13. 13.
    Cibura, C., Hildenbrand, D.: Geometric algebra approach to fluid dynamics. In: AGACSE Conference Leipzig (2008) Google Scholar
  14. 14.
    Clifford, W.K.: Applications of Grassmann’s extensive algebra. In: Tucker, R. (ed.) Mathematical Papers, pp. 266–276. Macmillian, London (1882) Google Scholar
  15. 15.
    Clifford, W.K.: On the classification of geometric algebras. In: Tucker, R. (ed.) Mathematical Papers, pp. 397–401. Macmillian, London (1882) Google Scholar
  16. 16.
    Dorst, L.: Honing geometric algebra for its use in the computer sciences. In: Sommer, G. (ed.) Geometric Computing with Clifford Algebra. Springer, Berlin (2001) Google Scholar
  17. 17.
    Dorst, L., Fontijne, D.: 3d Euclidean geometry through conformal geometric algebra (a gaviewer tutorial). Available from http://www.science.uva.nl/ga (2003)
  18. 18.
    Dorst, L., Mann, S.: Geometric algebra: a computational framework for geometrical applications (part i: algebra). Comput. Graph. Appl. 22(3), 24–31 (2002) CrossRefGoogle Scholar
  19. 19.
    Dorst, L., Doran, C., Lasenby, J. (eds.): Applications of Geometric Algebra in Computer Science and Engineering. Birkhäuser, Basel (2002) zbMATHGoogle Scholar
  20. 20.
    Dorst, L., Fontijne, D., Mann, S.: Geometric Algebra for Computer Science, An Object-Oriented Approach to Geometry. Morgan Kaufman, San Mateo (2007) Google Scholar
  21. 21.
    Ebling, J.: Clifford Fourier transform on vector fields. IEEE Trans. Vis. Comput. Graph. 11(4), 469–479 (2005). IEEE member Scheuermann, Gerik CrossRefGoogle Scholar
  22. 22.
    Fontijne, D., Dorst, L.: Modeling 3D Euclidean geometry. IEEE Comput. Graph. Appl. 23(2), 68–78 (2003) CrossRefGoogle Scholar
  23. 23.
    Fontijne, D., Bouma, T., Dorst, L.: Gaigen: A geometric algebra implementation generator. Available at http://www.science.uva.nl/ga/gaigen (2005)
  24. 24.
    Hestenes, D.: New Foundations for Classical Mechanics. Springer, Dordrecht (1986) zbMATHGoogle Scholar
  25. 25.
    Hestenes, D., Fasse, E.D.: Homogeneous rigid body mechanics with elastic coupling. In: Dorst, L., Doran, C., Lasenby, J. (eds.) Applications of Geometric Algebra in Computer Science and Engineering. Birkhäuser, Basel (2002) Google Scholar
  26. 26.
    Hestenes, D., Sobczyk, G.: Clifford Algebra to Geometric Calculus: A Unified Language for Mathematics and Physics. Springer, Dordrecht (1984) zbMATHGoogle Scholar
  27. 27.
    Hildenbrand, D., Hitzer, E.M.S.: Analysis of point clouds using conformal geometric algebra. In: GRAPP Conference Madeira (2008) Google Scholar
  28. 28.
    Hildenbrand, D., Pitt, J.: The Gaalop home page. Available at http://www.gaalop.de (2008)
  29. 29.
    Hildenbrand, D., Fontijne, D., Wang, Y., Alexa, M., Dorst, L.: Competitive runtime performance for inverse kinematics algorithms using conformal geometric algebra. In: Eurographics Conference Vienna (2006) Google Scholar
  30. 30.
    Hildenbrand, D., Lange, H., Stock, F., Koch, A.: Efficient inverse kinematics algorithm based on conformal geometric algebra using reconfigurable hardware. In: GRAPP Conference Madeira (2008) Google Scholar
  31. 31.
    Lasenby, J., Bayro-Corrochano, E., Lasenby, A., Sommer, G.: A new methodology for computing invariants in computer vision. In: Proceedings of ICPR 96 (1996) Google Scholar
  32. 32.
    Lasenby, J., Fitzgerald, W.J., Lasenby, A., Doran, C.: New geometric methods for computer vision: an application to structure and motion estimation. Int. J. Comput. Vis. 3(26), 191–213 (1998) CrossRefGoogle Scholar
  33. 33.
    Mann, S., Dorst, L.: Geometric algebra: a computational framework for geometrical applications (part ii: applications). Comput. Graph. Appl. 22(4), 58–67 (2002) CrossRefGoogle Scholar
  34. 34.
    Mann, S., Dorst, L., Bouma, T.: The making of GABLE, a geometric algebra learning environment in matlab, pp. 491–511 (2001) Google Scholar
  35. 35.
    Naeve, A., Rockwood, A.: Course 53 geometric algebra. In: Siggraph Conference Los Angeles (2001) Google Scholar
  36. 36.
    NVIDIA: The CUDA home page. Available at http://www.nvidia.com/object/cuda_home.html (2009)
  37. 37.
    Perwass, C.: Applications of geometric algebra in computer vision. Ph.D. thesis, Cambridge University (2000) Google Scholar
  38. 38.
    Perwass, C.: Geometric Algebra with Applications in Engineering. Springer, Berlin (2009) zbMATHGoogle Scholar
  39. 39.
    Perwass, C.: The CLU home page. Available at http://www.clucalc.info (2010)
  40. 40.
    Perwass, C., Förstner, W.: Uncertain geometry with circles, spheres and conics. In: Klette, R., Kozera, R., Noakes, L., Weickert, J. (eds.) Geometric Properties from Incomplete Data. Computational Imaging and Vision, vol. 31, pp. 23–41. Springer, Berlin (2006) CrossRefGoogle Scholar
  41. 41.
    Perwass, C., Lasenby, J.: A geometric analysis of the trifocal tensor. In: Klette Reinhard, G.G.R.K. (ed.) Image and Vision Computing New Zealand, IVCNZ’98, Proceedings, pp. 157–162. The University of Auckland (1998) Google Scholar
  42. 42.
    Perwass, C., Lasenby, J.: A unified description of multiple view geometry. In: Sommer, G. (ed.) Geometric Computing with Clifford Algebra. Springer, Berlin (2001) Google Scholar
  43. 43.
    Perwass, C., Sommer, G.: The inversion camera model. In: 28. Symposium für Mustererkennung, DAGM 2006, Berlin, 12.–14.09.2006. Springer, Berlin (2006) Google Scholar
  44. 44.
    Perwass, C., Gebken, C., Sommer, G.: Geometry and kinematics with uncertain data. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) 9th European Conference on Computer Vision. ECCV 2006, May 2006, Graz, Austria. LNCS, vol. 3951, pp. 225–237. Springer, Berlin (2006) Google Scholar
  45. 45.
    Petsche, H.J.: The Grassmann Bicentennial Conference home page. Available at http://www.uni-potsdam.de/u/philosophie/grassmann/Papers.htm (2009)
  46. 46.
    Pham, M.T., Tachibana, K., Hitzer, E.M.S., Yoshikawa, T., Furuhashi, T.: Classification and clustering of spatial patterns with geometric algebra. In: AGACSE Conference Leipzig (2008) Google Scholar
  47. 47.
    Reyes-Lozano, L., Medioni, G., Bayro-Corrochano, E.: Registration of 3d points using geometric algebra and tensor voting. J. Comput. Vis. 75(3), 351–369 (2007) CrossRefGoogle Scholar
  48. 48.
    Rosenhahn, B.: Pose estimation revisited. Ph.D. thesis, Inst. f. Informatik u. Prakt. Mathematik der Christian-Albrechts-Universität zu Kiel (2003) Google Scholar
  49. 49.
    Rosenhahn, B., Sommer, G.: Pose estimation in conformal geometric algebra. J. Math. Imaging Vis. 22, 27–70 (2005) CrossRefMathSciNetGoogle Scholar
  50. 50.
    Sommer, G. (ed.): Geometric Computing with Clifford Algebra. Springer, Berlin (2001) Google Scholar
  51. 51.
    Sommer, G.: Applications of geometric algebra in robot vision. In: Li, H., Olver, P.J., Sommer, G. (eds.) Computer Algebra and Geometric Algebra with Applications. LNCS, vol. 3519, pp. 258–277. Springer, Berlin (2005). 6th International Workshop IWMM 2004, Shanghai, China and International Workshop GIAE 2004, Xian, China Google Scholar
  52. 52.
    Sommer, G., Rosenhahn, B., Perwass, C.: The twist representation of free-form objects. In: Klette, R., Kozera, R., Noakes, L., Weickert, J. (eds.) Geometric Properties from Incomplete Data. Computational Imaging and Vision, vol. 31, pp. 3–22. Springer, Berlin (2006) CrossRefGoogle Scholar
  53. 53.
    The homepage of geomerics ltd. Available at http://www.geomerics.com
  54. 54.
    Wareham, R., Lasenby, J.: Applications of conformal geometric algebra in computer vision and graphics. ACM Trans. Graph. (2004, submitted) Google Scholar
  55. 55.
    Wareham, R., Cameron, J., Lasenby, J.: Applications of conformal geometric algebra in computer vision and graphics. Lect. Notes Comput. Sci. 3519, 329–349 (2005) CrossRefGoogle Scholar
  56. 56.
    Zaharia, M.D., Dorst, L.: Modeling and visualization of 3d polygonal mesh surfaces using geometric algebra. Comput. Graph. 29(5), 802–810 (2003) Google Scholar

Copyright information

© Springer-Verlag London 2010

Authors and Affiliations

  1. 1.Geometric Modeling and Scientific Visualization Research CenterKing Abdullah University of Science and TechnologyThuwalSaudi Arabia
  2. 2.Interactive Graphics Systems GroupUniversity of Technology DarmstadtDarmstadtGermany

Personalised recommendations