Some Applications of Gröbner Bases in Robotics and Engineering

  • Rafał AbłamowiczEmail author


Gröbner bases in polynomial rings have numerous applications in geometry, applied mathematics, and engineering. We show a few applications of Gröbner bases in robotics, formulated in the language of Clifford algebras, and in engineering to the theory of curves, including Fermat and Bézier cubics, and interpolation functions used in finite element theory.


Interpolation Function Triangular Element Clifford Algebra Geometric Algebra Monomial Ideal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abłamowicz, R., Fauser, B.: SP—a maple package for symmetric polynomials., 18 March 2009
  2. 2.
    Abłamowicz, R., Liu, J.: On the parallel lines for nondegenerate conics. Department of Mathematics. TTU, Tech. Report No. 2006-1, January 2006,, 18 March 2009
  3. 3.
    Arnold, V.I.: Wave Fronts and Caustics. Kluwer Academic, Dordrecht (1990) Google Scholar
  4. 4.
    Awange, J.L., Grafarend, E.W.: Solving Algebraic Computational Problems in Geodesy and Geoinformatics. Springer, Berlin (2005) zbMATHGoogle Scholar
  5. 5.
    Becker, T., Weispfenning, V.: Gröbner Bases. Springer, Berlin (1993) zbMATHGoogle Scholar
  6. 6.
    Buchberger, B.: In: Bose, N.K. (ed.) Multidimensional Systems Theory, p. 184. Reidel, Dordrecht (1985) Google Scholar
  7. 7.
    Buchberger, B.: In: Proc. Marktoberdorf Summer School 1995. Springer, Berlin (1997) Google Scholar
  8. 8.
    Buchberger, B., Winkler, F. (eds.): Gröbner Bases and Applications. Cambridge University Press, Cambridge (1998) zbMATHGoogle Scholar
  9. 9.
    Cox, D.: Introduction to Gröbner bases. Proc. Symp. Appl. Math. 53, 1–24 (1998) Google Scholar
  10. 10.
    Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra. Springer, New York (2008) Google Scholar
  11. 11.
    Eisenbud, D.: Commutative Algebra with a View Toward Algebraic Geometry. Springer, New York (2004) Google Scholar
  12. 12.
    Faugère, J.-Ch.: FGb,, 18 March 2009
  13. 13.
    Goldstein, H.: Classical Mechanics. Addison-Wesley, Reading (1980) zbMATHGoogle Scholar
  14. 14.
    Grabmeier, J., Kaltofen, E., Weispfenning, V. (eds.): Computer Algebra Handbook. Springer, Berlin (2003) zbMATHGoogle Scholar
  15. 15.
    Greuel, G.-M., Pfister, G.: A Singular Introduction to Commutative Algebra. Springer, Berlin, Heidelberg (2002) zbMATHGoogle Scholar
  16. 16.
    Gröbner: Basis Bibliography at Johann Radon Institute for Computational and Applied Mathematics (RICAM)., 18 March 2009
  17. 17.
    Hartshorne, R.: Algebraic Geometry. Springer, New York (1997) Google Scholar
  18. 18.
    Hildenbrand, D., Hitzer, E.: Analysis of point clouds: using conformal geometric algebra. In: GRAPP Conference Madeira Google Scholar
  19. 19.
    Hildenbrand, D., Lange, H., Stock, F., Koch, A.: Efficient inverse kinematics algorithms based on conformal geometric algebra: using reconfigurable hardware. In: GRAPP Conference Madeira Google Scholar
  20. 20.
    Meister, L.: In: Bayro Corrochano, E., Sobczyk, G. (eds.) Geometric Algebra with Applications in Science and Engineering, p. 387. Birkhäuser, Basel (2001) Google Scholar
  21. 21.
    Meister, L., Schaeben, H.: Math. Methods Appl. Sci. 28, 101–126 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Norton, R.L.: Design of Machinery: An Introduction to the Synthesis and Analysis of Mechanisms and Machines. McGraw-Hill, New York (1999) Google Scholar
  23. 23.
    Reddy, J.N.: An Introduction to the Finite Element Method, 2nd edn. McGraw-Hill, New York (1993) Google Scholar
  24. 24.
    SINGULAR:PLURAL,, 18 March 2009
  25. 25.
    Uicker, J.J., Pennock, G.R., Shigley, J.E.: Theory of Machines and Mechanisms. Oxford University Press, London (2003) Google Scholar
  26. 26.
    Waterloo Maple Incorporated: Maple, a general purpose computer algebra system, Waterloo, (2007)

Copyright information

© Springer-Verlag London 2010

Authors and Affiliations

  1. 1.Department of MathematicsTennessee Technological UniversityCookevilleUSA

Personalised recommendations