Advertisement

Computational Complexity Reductions Using Clifford Algebras

  • René Schott
  • G. Stacey StaplesEmail author
Chapter

Abstract

Given a computing architecture based on Clifford algebras, a natural context for determining an algorithm’s time complexity is in terms of the number of geometric (Clifford) operations required. In this paper the existence of such a processor is assumed, and a number of graph-theoretical problems are considered. This paper is an extension of previous work, in which the authors defined the “nilpotent adjacency matrix” associated with a finite graph and showed that a number of graph problems of complexity class NP are polynomial in the number of Clifford operations required. Previous results are recalled and illustrated with Mathematica examples. New results are obtained, and old results are improved by the development of new techniques. In particular, a matrix-free approach is developed to count matchings, compute girth, and enumerate proper cycle covers of finite graphs. These new results and techniques are also illustrated with Mathematica examples.

Keywords

Connected Graph Edge Incident Hamiltonian Cycle Clifford Algebra Hamiltonian Path 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abłamowicz, R., Fauser, B.: CLIFFORD—a Maple package for Clifford algebra computations. http://math.tntech.edu/rafal/
  2. 2.
    Aerts, D., Czachor, M.: Cartoon computation: quantum-like computing without quantum mechanics. J. Phys. A: Math. Theor. 40, F259–F263 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Ben-Dor, A., Halevi, S.: Zero-one permanent is P-complete, a simpler proof. In: Proceedings of the 2nd Israel Symposium on the Theory and Computing Systems, pp. 108–117 (1993) Google Scholar
  4. 4.
    Chien, S., Rasmussen, L., Sinclair, A.: Clifford algebras and approximating the permanent. J. Comp. Syst. Sci. 67, 263–290 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. J. Symb. Comput. 9, 251–280 (1990) zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Fontijne, D.: Efficient implementation of geometric algebra. Ph.D. thesis, University of Amsterdam (2007) Google Scholar
  7. 7.
    Fontijne, D., Bouma, T., Dorst, L.: GAIGEN: a geometric algebra implementation generator, University of Amsterdam, NL, July 2002. http://www.science.uva.nl/ga/gaigen
  8. 8.
    Franchini, S., Gentile, A., Grimaudo, M., Hung, C.A., Impastato, S., Sorbello, F., Vassallo, G., Vitabile, S.: A sliced coprocessor for native Clifford algebra operations. In: Proceedings of the 10th Euromicro Conference on Digital System Design Architectures, Methods and Tools (DSD 2007), pp. 436–439 (2007) Google Scholar
  9. 9.
    Gentile, A., Segreto, S., Sorbello, F., Vassallo, G., Vitabile, S., Vuollo, V.: CliffoSor, an innovative FPGA-based architecture for geometric algebra. In: Proceedings of the International Conference on Engineering of Reconfigurable Systems and Algorithms (ERSA 2005), pp. 211–217 Google Scholar
  10. 10.
    Gentile, A., Segreto, S., Sorbello, F., Vassallo, G., Vitabile, S., Vuollo, V.: CliffoSor: a parallel embedded architecture for geometric algebra and computer graphics. In: Proceedings of the IEEE International Workshop on Computer Architecture for Machine Perception (CAMP 2005), pp. 90–95. IEEE Comput. Soc., Los Alamitos (2005) CrossRefGoogle Scholar
  11. 11.
    Leopardi, P.: The GluCat home page, http://glucat.sourceforge.net/
  12. 12.
    Mishra, B., Wilson, P.: Color edge detection hardware based on geometric algebra. http://eprints.ecs.soton.ac.uk/13188/
  13. 13.
    Mishra, B., Wilson, P.: Hardware implementation of a geometric algebra processor core. In: Proceedings of ACA 2005, IMACS, Int. Conf. on Advancement of Computer Algebra, Nara, Japan (2005). http://eprints.ecs.soton.ac.uk/10957/
  14. 14.
    Perwass, C.: The CLU Project web page, http://www.perwass.de/cbup/clu.html
  15. 15.
    Perwass, C., Gebken, C., Sommer, G.: Implementation of a Clifford algebra co-processor design on a field programmable gate array. In: Clifford Algebras Applications to Mathematics, Physics, and Engineering. Progress in Mathematical Physics, vol. 34. Birkhäuser, Basel (2004) Google Scholar
  16. 16.
    Porteous, I.: Lecture 2: Mathematical structure of Clifford algebras. In: Abłamowicz, R., Sobczyk, G. (eds.) Lectures on Clifford (Geometric) Algebras and Applications. Birkhäuser, Basel (2003) Google Scholar
  17. 17.
    Schott, R., Staples, G.S.: Nilpotent adjacency matrices and random graphs. Ars Comb. (2010, to appear) Google Scholar
  18. 18.
    Schott, R., Staples, G.S.: Nilpotent adjacency matrices, random graphs, and quantum random variables. J. Phys. A: Math. Theor. 41, 155205 (2008) CrossRefMathSciNetGoogle Scholar
  19. 19.
    Schott, R., Staples, G.S.: Reductions in computational complexity using Clifford algebras. Adv. Appl. Clifford Algebr. (2010, to appear) Google Scholar
  20. 20.
    Staples, G.S.: Clifford-algebraic random walks on the hypercube. Adv. Appl. Clifford Algebr. 15, 213–232 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Staples, G.S.: Graph-theoretic approach to stochastic integrals with Clifford algebras. J. Theor. Probab. 20, 257–274 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Staples, G.S.: Norms and generating functions in Clifford algebras. Adv. Appl. Clifford Algebr. 18, 75–92 (2008) zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Valiant, L.: The complexity of computing the permanent. Theor. Comput. Sci. 8, 189–201 (1979) zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    West, D.: Introduction to Graph Theory, 2nd edn. Prentice Hall, New York (2001) Google Scholar

Copyright information

© Springer-Verlag London 2010

Authors and Affiliations

  1. 1.IECN and LORIA Université Henri Poincaré-Nancy IVandoeuvre-lès-NancyFrance
  2. 2.Department of Mathematics and StatisticsSouthern Illinois University EdwardsvilleEdwardsvilleUSA

Personalised recommendations