Advertisement

Interactive 3D Space Group Visualization with CLUCalc and Crystallographic Subperiodic Groups in Geometric Algebra

  • Eckhard M. S. HitzerEmail author
  • Christian Perwass
  • Daisuke Ichikawa
Chapter

Abstract

The Space Group Visualizer (SGV) for all 230 3D space groups is a standalone PC application based on the visualization software CLUCalc. We first explain the unique geometric algebra structure behind the SGV. In the second part we review the main features of the SGV: The GUI, group and symmetry selection, mouse pointer interactivity, and visualization options. We further introduce the joint use with Hahn (Space-group Symmetry, 5th edn., International Tables of Crystallography, vol. A, Springer, Dordrecht, 2005). In the third part we explain how to represent the 162 so-called subperiodic groups of crystallography in geometric algebra. We construct a new compact geometric algebra group representation symbol, which allows us to read off the complete set of geometric algebra generators. For clarity, we moreover state explicitly which generators are chosen. The group symbols are based on the representation of point groups in geometric algebra by versors.

Keywords

Point Group Geometric Algebra Interactive Visualization Group Notation Mouse Pointer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahlfors, L.: Clifford numbers and Moebius transformations in ℝn. In: Chisholm, J., Common, A. (eds.) Clifford Algebras and Their Applications in Mathematical Physics. Reidel, Dordrecht (1986) Google Scholar
  2. 2.
    Angles, P.: Construction de revêtements du groupe conforme d’un espace vectoriel muni d’une métrique de type (p,q). Ann. IHP Sect. A 33(1), 33–51 (1980) MathSciNetzbMATHGoogle Scholar
  3. 3.
    Angles, P.: Conformal Groups in Geometry and Spin Structures. Progress in Mathematical Physics. Birkhäuser, Basel (2007) Google Scholar
  4. 4.
    Aragón-González, G., Aragón, J.L., Rodríguez-Andrade, M.A., Verde-Star, L.: Reflections, rotations, and Pythagorean numbers. Adv. Appl. Clifford Algebr. Online First (2008) Google Scholar
  5. 5.
    Bonola, R.: La Geometria Non-euclidia: Exposizione Storico-Critico del Suo Sviluppo. Zanichelli, Bologna (1906). Translated by H.S. Carslaw, Non-Euclidean Geometry. Dover, New York (1955). References to Friedrich Ludwig Wachter’s horosphere on pp. 62, 63 and 88. Download version: http://www.archive.org/details/noneuclideangeom00bonorich Google Scholar
  6. 6.
    Cartan, E.: La Théorie des Spineurs I, II. Actualités Scientifiques et Industrielles, vol. 643. Hermann, Paris (1938) Google Scholar
  7. 7.
    Cox, H.: Application of Grassmann’s Ausdehnungslehre to properties of circles. Q. J. Pure Appl. Math. 25, 1–71 (1891) Google Scholar
  8. 8.
    Coxeter, H.S.M.: Discrete groups generated by reflections. Ann. Math. 35, 588–621 (1934) CrossRefMathSciNetGoogle Scholar
  9. 9.
    Coxeter, H.S.M.: Non-Euclidean Geometry, Toronto, 1942, 3rd edn. Oxford University Press, Cambridge (1957). References to Friedrich Ludwig Wachter’s horosphere on pp. 7 and 220 Google Scholar
  10. 10.
    Coxeter, H.S.M., Moser, W.O.J.: Generators and Relations for Discrete Groups, 4th edn. Springer, Berlin (1980) Google Scholar
  11. 11.
    Crumeyrolle, A.: Chap. 12 of Orthogonal and Symplectic Clifford Algebras. Kluwer, Dordrecht (1990) Google Scholar
  12. 12.
    Dieudonné, J.: Sur les Groupes Classiques. Actualités Scientifiques et Industrielles, vol. 1040. Hermann, Paris (1948) zbMATHGoogle Scholar
  13. 13.
    Doran, C., Lasenby, A.: Geometric Algebra for Physicists. Cambridge University Press, Cambridge (2003) zbMATHGoogle Scholar
  14. 14.
    Dorst, L., Fontijne, D., Mann, S.: Geometric Algebra for Computer Science: An Object-oriented Approach to Geometry. Morgan Kaufmann Series in Computer Graphics. Morgan Kaufmann, San Mateo (2007) Google Scholar
  15. 15.
    Dress, A.W.M., Havel, T.F.: Distance geometry and geometric algebra. Found. Phys. 23(10), 1357–1374 (1993) CrossRefMathSciNetGoogle Scholar
  16. 16.
    Engel, P., Matsumoto, T., Steinmann, G., Wondratschek, H.: The non-characteristic orbits of the space groups. Z. Kristallogr., Supplement Issue No. 1. Raumgruppen-Projektionen. In Abhandlungen der Mathematisch-Physikalischen Klasse der Sächsischen Akademie (1984) Google Scholar
  17. 17.
    Forder, H.G.: The Calculus of Extension. Cambridge University Press, Cambridge (1941) Google Scholar
  18. 18.
    Gallier, J.: Geometric Methods and Applications. For Computer Science and Engineering. Springer, New York (2001). Chap. 7 zbMATHGoogle Scholar
  19. 19.
    Gutierrez, J.D.M.: Operaciones de simitria mediante algebra geometrica aplicadas a grupos cristalograficos. Thesis, UNAM, Mexico (1996) Google Scholar
  20. 20.
    Hahn, T. (ed.) Space-group Symmetry, 5th edn. International Tables of Crystallography, vol. A. Springer, Dordrecht (2005). Online: it.iucr.org Google Scholar
  21. 21.
    Hestenes, D.: Old wine in new bottles. In: Bayro-Corrochano, E., Sobczyk, G. (eds.) Geometric Algebra: A Geometric Approach to Computer Vision, Quantum and Neural Computing, Robotics, and Engineering, pp. 498–520. Birkhäuser, Basel (2001) Google Scholar
  22. 22.
    Hestenes, D.: Point groups and space groups in geometric algebra. In: Dorst, L., et al. (ed.) Applications of Geometric Algebra in Computer Science and Engineering, pp. 3–34. Birkhäuser, Basel (2002) Google Scholar
  23. 23.
    Hestenes, D.: Spacetime physics with geometric algebra. Am. J. Phys. 71(7), 691–714 (2003) CrossRefGoogle Scholar
  24. 24.
    Hestenes, D., Holt, J.: The crystallographic space groups in geometric algebra. J. Math. Phys. 48, 023514 (2007) CrossRefMathSciNetGoogle Scholar
  25. 25.
    Hestenes, D., Li, H., Rockwood, A.: New algebraic tools for classical geometry. In: Sommer, G. (ed.) Geometric Computing with Clifford Algebras, pp. 4–26. Springer, Berlin (2001) Google Scholar
  26. 26.
    Hitzer, E.: Euclidean Geometric Objects in the Clifford Geometric Algebra of {Origin, 3-Space, Infinity}. Bull. Belg. Math. Soc. Simon Stevin 11(5), 653–662 (2004) MathSciNetzbMATHGoogle Scholar
  27. 27.
    Hitzer, E.: Conic sections and meet intersections in geometric algebra, computer algebra and geometric algebra with applications. Lecture Notes in Computer Science, vol. 3519, pp. 350–362. Springer, Berlin (2005). GIAE 2004, Revised Selected Papers Google Scholar
  28. 28.
    Hitzer, E., Perwass, C.: Crystal cells in geometric algebra. In: Proc. Int. Symp. on Adv. Mech. Eng. (ISAME), Fukui, pp. 290–295 (2004) Google Scholar
  29. 29.
    Hitzer, E., Perwass, C.: Full geometric description of all symmetry elements of crystal space groups by the suitable choice of only three vectors for each bravais cell or crystal family. ISAME, Busan, pp. 19–25 (2005) Google Scholar
  30. 30.
    Hitzer, E., Perwass, C.: Crystal cell and space lattice symmetries in Clifford geometric algebra. In: Simos, T.E., et al. (ed.) Int. Conf. on Numerical Analysis and Applied Mathematics, Rhodes, pp. 937–941. Wiley, VCH, New York, Weinheim (2005) Google Scholar
  31. 31.
    Hitzer, E., Perwass, C.: Space group visualizer for monoclinic space groups. Bull. Soc. Sci. Form 21, 38–39 (2006) Google Scholar
  32. 32.
    Hitzer, E., Perwass, C.: The space group visualizer. In: Proceedings of ISAMPE, pp. 172–181 (2006) Google Scholar
  33. 33.
    Hitzer, E., Perwass, C.: Three vector generation of crystal space groups in geometric algebra. Bull. Soc. Sci. Form 21, 55–56 (2006) Google Scholar
  34. 34.
    Hitzer, E., Perwass, C.: Interactive 3D space group visualization with CLUCalc and the Clifford geometric algebra description of space groups. Proc. of ICCA8, Las Campinas, Brazil (2008, accepted) Google Scholar
  35. 35.
    Hitzer, E., Tachibana, K., Buchholz, S., Yu, I.: Carrier method for the general evaluation and control of pose, molecular conformation, tracking, and the like. Adv. Appl. Clifford Algebr. Online First (2009) Google Scholar
  36. 36.
    Kopcik, V.A.: Subnikovskie Gruppy: Spravochnik po Simmetrii i Fizicheskim Svoistvam Kristallicheskikh Struktur. Izd. Moskovskogo Univ., Moskva (1966). 722 p. (in Russian) Google Scholar
  37. 37.
    Kopsky, V., Litvin, D.B. (eds.): Subperiodic Groups, 1st edn. International Tables for Crystallography, vol. E. Kluwer, Dordrecht (2002). Online: it.iucr.org Google Scholar
  38. 38.
    Li, H.: Invariant Algebras and Geometric Reasoning. World Scientific, Singapore (2008) CrossRefzbMATHGoogle Scholar
  39. 39.
    Lie, S.: On a Class of Geometric Transformations. University of Oslo Press, Oslo (1872) Google Scholar
  40. 40.
    Litvin, D.B.: Tables of properties of magnetic subperiodic groups. Acta Crystallogr. Sect. A, Found. Crystallogr. A 61, 382–385 (2005) CrossRefGoogle Scholar
  41. 41.
    Lounesto, P.: Clifford Algebras and Spinors, 2nd edn. Cambridge University Press, Cambridge (2001) CrossRefzbMATHGoogle Scholar
  42. 42.
    Lounesto, P., Latvamaa, E.: Conformal transformations and Clifford algebras. Proc. Am. Math. Soc. 79(4), 533–538 (1980) CrossRefMathSciNetzbMATHGoogle Scholar
  43. 43.
    Maks, J.: Modulo (1,1) periodicity of Clifford algebras and generalized (anti-) Moebius transformations. Thesis, Delft University of Technology, The Netherlands (1989) Google Scholar
  44. 44.
    Perwass, C.: CLUCalc—interactive visualization. www.clucalc.info
  45. 45.
    Perwass, C., Hitzer, E.: Interactive visualization of full geometric description of crystal space groups. ISAME, Busan, pp. 276–282 (2005) Google Scholar
  46. 46.
    Perwass, C., Hitzer, E.: Space group visualizer. www.spacegroup.info (2005)
  47. 47.
    Souvignier, B.: Space groups. Syllabus for MaThCryst summer school, 15–20 July 2007, Havanna, Cuba Google Scholar
  48. 48.
    The Holy Bible, New International Version. International Bible Society, Colorado Springs (1984) Google Scholar

Copyright information

© Springer-Verlag London 2010

Authors and Affiliations

  • Eckhard M. S. Hitzer
    • 1
    Email author
  • Christian Perwass
    • 2
  • Daisuke Ichikawa
    • 1
  1. 1.Department of Applied PhysicsUniversity of FukuiFukuiJapan
  2. 2.Institute for InformaticsUniversity of KielKielGermany

Personalised recommendations