Advertisement

Fluid Flow Problems with Quaternionic Analysis—An Alternative Conception

  • K. Gürlebeck
  • W. SprößigEmail author
Chapter

Abstract

This article deals with some classes of fluid flow problems under given initial-value and boundary-value conditions. Using a quaternionic operator calculus, representations of solutions are constructed. For the case of a bounded velocity, a numerically stable semi-discretization procedure for the solution of the problem is presented.

Keywords

Stokes Equation Alternative Conception Shallow Water Equation Stokes Problem Operator Calculus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bahmann, H., Gürlebeck, K., Shapiro, M., Sprößig, W.: On a modified Teodorescu transform. Integral Transform. Spec. Funct. 12(3), 213–226 (2001) zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Brackx, F., Delanghe, R., Sommen, F.: Clifford Analysis. Pitman Research Notes Math., vol. 76. Pitman, London (1982) zbMATHGoogle Scholar
  3. 3.
    Faustino, N., Gürlebeck, K., Hommel, A., Kähler, U.: Difference potentials for the Navier–Stokes equations in unbounded domains. J. Differ. Equ. Appl. 12(6), 577–596 (2006) zbMATHCrossRefGoogle Scholar
  4. 4.
    Fengler, M.J.: Vector spherical harmonic and vector wavelet based non-linear Galerkin schemes for solving the incompressible Navier–Stokes equation on the sphere. Shaker, D386 (2005) Google Scholar
  5. 5.
    Gürlebeck, K.: Grundlagen einer diskreten räumlich verallgemeinerten Funktionentheorie und ihrer Anwendungen. Habilitationsschrift, TU Karl-Marx-Stadt (1988) Google Scholar
  6. 6.
    Gürlebeck, K., Hommel, A.: On finite difference potentials and their applications in a discrete function theory. Math. Methods Appl. Sci. 25(16–18), 1563–1576 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Gürlebeck, K., Sprößig, W.: Quaternionic Analysis and Elliptic Boundary Value Problems. Birkhäuser, Basel (1990) zbMATHGoogle Scholar
  8. 8.
    Gürlebeck, K., Sprößig, W.: Quaternionic and Clifford Calculus for Physicists and Engineers. Mathematical Methods in Practice. Wiley, New York (1997) zbMATHGoogle Scholar
  9. 9.
    Gürlebeck, K., Sprößig, W.: Representation theory for classes of initial value problems with quaternionic analysis. Math. Methods Appl. Sci. 25, 1371–1382 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Hung, L.U.: Finite Element Analysis of Non-Newtonian Flow. Springer, Berlin (1989) Google Scholar
  11. 11.
    Ishimura, N., Nakamura, M.: Uniqueness for unbounded classical solutions of the MHD equations. MMAS 20, 617–623 (1997) zbMATHMathSciNetGoogle Scholar
  12. 12.
    Le, T.H., Sprößig, W.: On a new notion of holomorphy and its applications. Cubo Math. J. 11(1), 145–162 (2008) Google Scholar
  13. 13.
    Majda, A.: Introduction to PDE’s and Waves for Atmosphere and Ocean. Courant-Lecture Notes, vol. 9. Courant Institute of Mathematical Sciences, New York (2003) Google Scholar
  14. 14.
    Przeworska-Rolewicz, D.: Algebraic theory of right invertible operators. Stud. Math. 48, 129–144 (1973) zbMATHMathSciNetGoogle Scholar
  15. 15.
    Rajagapol, K.R.: Mechanics of Non-Newtonian Fluids. Pitman, London (1998) Google Scholar
  16. 16.
    Ryabenskij, V.S.: The Method of Difference Potentials for Some Problems of Continuum Mechanics. Nauka, Moscow (1987) (in Russian) Google Scholar
  17. 17.
    Schlichting, A., Sprößig, W.: Norm estimations of the modified Teodorescu transform with application to a multidimensional equation of Airy’s type. In: Simos, Th.E., Psihoyios, G., Tsitouras, Ch. (eds.) Numerical Analysis and Applied Mathematics. American Institute of Physics (AIP) Conference Series, vol. 1048 (2008) Google Scholar
  18. 18.
    Sprößig, W., Gürlebeck, K.: Representation theory for classes of initial value problems with quaternionic analysis. Math. Methods Appl. Sci. 25, 1371–1382 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Sprößig, W.: Fluid flow equations with variable viscosity in quaternionic setting. In: Advances in Applied Clifford Algebras, vol. 17, pp. 259–272. Birkhäuser, Basel (2007) Google Scholar
  20. 20.
    Tasche, M.: Eine einheitliche Herleitung verschiedener Interpolationsformeln mittels der Taylorschen Formel der Operatorenrechnung. Z. Angew. Math. Mech. 61, 379–393 (1981) (in German) zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag London 2010

Authors and Affiliations

  1. 1.Institut für Mathematik/PhysikBauhaus-Universität WeimarWeimarGermany
  2. 2.Fakultaet fuer Mathematik und InformatikTU Bergakademie FreibergFreibergGermany

Personalised recommendations