Model-Based Visual Self-localization Using Gaussian Spheres

  • David Gonzalez-AguirreEmail author
  • Tamim Asfour
  • Eduardo Bayro-Corrochano
  • Ruediger Dillmann


A novel model-based approach for global self-localization using active stereo vision and density Gaussian spheres is presented. The proposed object recognition components deliver noisy percept subgraphs, which are filtered and fused into an ego-centered reference frame. In subsequent stages, the required vision-to-model associations are extracted by selecting ego-percept subsets in order to prune and match the corresponding world-model subgraph. Ideally, these coupled subgraphs hold necessary information to obtain the model-to-world transformation, i.e., the pose of the robot. However, the estimation of the pose is not robust due to the uncertainties introduced when recovering Euclidean metric from images and during the mapping from the camera to the ego-center. The approach models the uncertainty of the percepts with a radial normal distribution. This formulation allows a closed-form solution which not only derives the maximal density position depicting the optimal ego-center but also ensures the solution even in situations where pure geometric spheres might not intersect.


Humanoid Robot Kinematic Chain Geometric Algebra Point Pair World Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Asfour, T., Azad, P., Vahrenkamp, N., Regenstein, K., Bierbaum, A., Welke, K., Schröder, J., Dillmann, R.: Toward humanoid manipulation in human-centred environments. Robot. Auton. Syst. 56(1), 54–65 (2008) CrossRefGoogle Scholar
  2. 2.
    Asfour, T., Regenstein, K., Azad, P., Schroder, J., Bierbaum, A., Vahrenkamp, N., Dillmann, R.: ARMAR-3: an integrated humanoid platform for sensory-motor control. In: 6th International Conference on Humanoid Robots, IEEE-RAS, 4–6 Dec. 2006, pp. 169–175 Google Scholar
  3. 3.
    Asfour, T., Welke, K., Azad, P., Ude, A., Dillmann, R.: The Karlsruhe humanoid head. In: IEEE-RAS International Conference on Humanoid Robots (2008) Google Scholar
  4. 4.
    John, H., Horst, S.: Handbook of Mathematics and Computational Science. Springer, Berlin (2006). ISBN: 978-0-387-94746-4 Google Scholar
  5. 5.
    Bayro, E., Sobczyk, G.: Geometric Algebra with Applications in Science and Engineering. Birkhäuser, Basel (2001). ISBN: 978-0-8176-4199-3 zbMATHGoogle Scholar
  6. 6.
    Dorst, L., Fontijne, D., Mann, S.: Geometric Algebra for Computer Science, An Object-Oriented Approach to Geometry. The Morgan Kaufmann Series in Computer Graphics. Morgan Kaufmann, San Mateo (2007). ISBN: 0-123-69465-5 Google Scholar
  7. 7.
    Harris, C., Stephens, M.J.: A combined corner and edge detector. In: Alvey Vision Conference, pp. 147–152 (1988) Google Scholar
  8. 8.
    Lowe, D.: Object recognition from local scale-invariant features. In: The Proceedings of the Seventh IEEE International Conference on Computer Vision, Sept. 1999, pp. 1150–1157 Google Scholar
  9. 9.
    Gonzalez-Aguirre, D., Asfour, T., Bayro-Corrochano, E., Dillmann, R.: Model-based visual self-localization using geometry and graphs. In: ICPR 2008. 19th International Conference on Pattern Recognition, Tampa, Florida Dic. (2008) Google Scholar
  10. 10.
    Ullman, S.: High-Level Vision. MIT Press, Cambridge (1996). ISBN: 978-0-262-71007-7 zbMATHGoogle Scholar
  11. 11.
    Se, S., Lowe, D., Little, J.: Vision-based global localization and mapping for mobile robots. IEEE Trans. Robot. Autom. 21, 364–375 (2005) Google Scholar
  12. 12.
    Duda, R., Hart, P.: Pattern Classification and Scene Analysis. Wiley, New York (1973). ISBN: 0-471-22361-1 zbMATHGoogle Scholar
  13. 13.
    Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE Trans. Pattern. Anal. Mach. Intell. 24, 603–619 (2002) CrossRefGoogle Scholar
  14. 14.
    Gonzalez-Aguirre, D., Bayro-Corrochano, E.: A geometric approach for an intuitive perception system of humanoids. In: International Conference on Intelligent Autonomous Systems, Proceedings IAS-9, March 2006 Google Scholar
  15. 15.
    Pollefeys, M., Gool, L., Vergauwen, M., Verbiest, F., Cornelis, K., Tops, J., Koch, R.: Visual modeling with a hand-held camera. Int. J. Comput. Vis. 59(3), 207–232 (2004) CrossRefGoogle Scholar
  16. 16.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2004). ISBN: 0521540518 zbMATHGoogle Scholar
  17. 17.
    Kallenberg, O.: Foundations of Modern Probability. Springer, New York (1997). ISBN: 0387953132 zbMATHGoogle Scholar
  18. 18.
    Korn, T., Granino, A.: Mathematical Handbook for Scientists and Engineers. Dover, New York (2000). ISBN: 0-486-41147-8 Google Scholar
  19. 19.
    Avis, D., Fukuda, K.: A pivoting algorithm for convex hulls and vertex enumeration of arrangements and polyhedra. Int. J. Discrete Comput. Geom. 8, 295–313 (1992) zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag London 2010

Authors and Affiliations

  • David Gonzalez-Aguirre
    • 1
    Email author
  • Tamim Asfour
    • 1
  • Eduardo Bayro-Corrochano
    • 2
  • Ruediger Dillmann
    • 3
  1. 1.Humanoids and Intelligence Systems LabKarlsruhe Institute of TechnologyKarlsruheGermany
  2. 2.Computer Science, CINVESTAV Unidad GuadalajaraCentro de Investigación y Estudios Avanzados del I.P.N (Cinvestav)ZapopanMexico
  3. 3.Karlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations