Skip to main content

Geometric Associative Memories and Their Applications to Pattern Classification

  • Chapter
  • First Online:
  • 2549 Accesses

Abstract

Associative memories (AMs) were proposed as tools usually used in the restoration and classification of distorted patterns. Many interesting models have emerged in the last years with this aim. In this chapter a novel associative memory model (Geometric Associative Memory, GAM) based on Conformal Geometric Algebra (CGA) principles is described. At a low level, CGA provides a new coordinate-free framework for numeric processing in problem solving. The proposed model makes use of CGA and quadratic programming to store associations among patterns and their respective class. To classify an unknown pattern, an inner product is applied between it and the obtained GAM. Numerical and real examples to test the proposal are given. Formal conditions are also provided that assure the correct functioning of the proposal.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   159.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   209.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   229.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, J.: A simple neural network generating an interactive memory. Math. Biosci. 14, 197–220 (1972)

    Article  MATH  Google Scholar 

  2. Arena, P., Baglio, S., Fortuna, L., Xibilia, M.: Chaotic time series prediction via quaternionic multilayer perceptrons. Syst., Man and Cybern., Intell. Syst. for the 21st Century, IEEE Int. Conf., vol. 2, pp. 1790–1794 (1995)

    Google Scholar 

  3. Asuncion, A., Newman, D.: UCI machine learning repository (2007). http://www.ics.uci.edu/mlearn/MLRepository.html

  4. Banarer, V., Perwass, C., Sommer, G.: The hypersphere neuron. 11th Eur. Symp. on Artif. Neural Netw. Evere, Belgium: d-side publ., pp. 469–474 (2003)

    Google Scholar 

  5. Barron, R.: Memorias asociativas y redes neuronales morfologicas para la recuperacion de patrones. Ph.D, thesis, Mexico, DF: National Institute Politechnic—Center of Computing Research (2006)

    Google Scholar 

  6. Barron, R., Cruz, B., Sossa, H., Laguna, G.: Conformal geometric algebra for spherical convex hull optimization. In: Proc. 3rd Internat. Conf. on Appl. of Geom. Algebras in Comput. Sci. and Eng., AGACSE 2008 (2008)

    Google Scholar 

  7. Bayro, E., Vallejo, R.: Geometric feedforward neural networks and support vector machines. In: Bayro-Corrochano, E., Sobczyk, G. (eds.) Geometric Algebra with Applications in Science and Engineering, pp. 309–325. Birkhäuser, Basel (2001)

    Google Scholar 

  8. Buchholz, S.: A theory of neural computation with Clifford algebras. Thesis, Kiel: Christian-Albrechts-Universitat (2005)

    Google Scholar 

  9. Buchholz, S., Tachibana, K., Hitzer, E.: Optimal learning rates for Clifford neurons. In: Proc. of ICANN 2007, Part I. LNCS, vol. 4668, pp. 864–873. Springer, Berlin (2007)

    Google Scholar 

  10. Clifford, W.: Applications of Grassmann’s extensive algebra. Am. J. Math. 1(4), 350–358 (1878)

    Article  MathSciNet  Google Scholar 

  11. Cruz, B., Sossa, H., Barron, R.: A new two level associative memory for efficient pattern restoration. Neural Process. Lett. 25, 1–16 (2007)

    Article  Google Scholar 

  12. Cruz, B., Barron, R., Sossa, H.: Geometric associative memory model with application to pattern classification. In: Proc. 3rd Internat. Conf. on Appl. of Geom. Algebras in Comput. Sci. and Eng., AGACSE 2008 (2008)

    Google Scholar 

  13. Hitzer, E.: Euclidean geometric objects in the Clifford geometric algebra of origin, 3-space, infinity. Bull. Belg. Math. Soc. 11(5), 653–662 (2004)

    MATH  MathSciNet  Google Scholar 

  14. Hestenes, D., Sobczyk, G.: Clifford Algebra to Geometric Calculus. Springer, Berlin (1984)

    MATH  Google Scholar 

  15. Hestenes, D.: Old wine in new bottles. In: Bayro-Corrochano, E., Sobczyk, G. (eds.) Geometric Algebra: A Geometric Approach to Computer Vision, Quantum and Neural Computing, Robotics, and Engineering, pp. 498–520. Birkhäuser, Basel (2001)

    Google Scholar 

  16. Hestenes, D., Li, H., Rockwood, A.: New algebraic tools for classical geometry. In: Sommer, G. (ed.) Geometric Computing with Clifford Algebras. vol. 40, pp. 3–23. Springer, Heidelberg (2001)

    Google Scholar 

  17. Hildebrand, D.: Geometric computing in computer graphics using conformal geometric algebra. Tutorial, TU Darmstadt, Germany: Interact. Graph. Syst. Group (2005)

    Google Scholar 

  18. Hopfield, J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. 79, 2554–2558 (1982)

    Article  MathSciNet  Google Scholar 

  19. Kohonen, T.: Correlation matrix memories. IEEE Trans. Comput. C-21(4), 353–359 (1972)

    Article  Google Scholar 

  20. Li, H., Hestenes, D., Rockwood, A.: Generalized homogeneous coordinates for computational geometry. In: Sommer, G. (ed.) Geometric Computing with Clifford Algebras. vol. 40, pp. 27–52. Springer, Heidelberg (2001)

    Google Scholar 

  21. McCulloch, W., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5, 115–133 (1943)

    Article  MATH  MathSciNet  Google Scholar 

  22. Nakano, K.: Associatron a model or associative memory. IEEE Trans. Syst., Man Cybern 12, 380–388 (1972)

    Article  Google Scholar 

  23. Ritter, G., Sussner, P., Diaz-de-Leon, J.: Morphological associative memories. IEEE Trans. Neural Netw. 9(2), 281–293 (1998)

    Article  Google Scholar 

  24. Sossa, H., Barron, R.: New associative model for pattern recall in the presence of mixed noise. IASTED Fifth Int. Conf. on Signal and Image Process. (SIP 2003), pp. 485–490 (2003)

    Google Scholar 

  25. Steinbouch, K.: Die Lernmatrix. Kybernetik 1(1), 26–45 (1961)

    Google Scholar 

  26. Sussner, P.: Observations on morphological associative memories and the kernel method. Neurocomputing 31, 167–183 (2003)

    Article  Google Scholar 

  27. Yañez, C., Diaz-de-Leon, J.: Introducción a las memorias asociativas. Mexico: Res. in Comp. Sci. (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Barron .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London

About this chapter

Cite this chapter

Cruz, B., Barron, R., Sossa, H. (2010). Geometric Associative Memories and Their Applications to Pattern Classification. In: Bayro-Corrochano, E., Scheuermann, G. (eds) Geometric Algebra Computing. Springer, London. https://doi.org/10.1007/978-1-84996-108-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-108-0_11

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-107-3

  • Online ISBN: 978-1-84996-108-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics