Skip to main content

Part of the book series: Advances in Industrial Control ((AIC))

Abstract

Since their first commercial application for mineral separation in the early 1980s, flotation columns have become a standard piece of equipment in mineral concentrators particularly for cleaning operations. This chapter presents and discusses the most recent advances in instrumentation and automatic control of flotation columns. It also examines how current industrial practice could benefit from recent academic developments in these areas. A particular emphasis is placed on the development of specific sensors for the continuous monitoring of process operations and their regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boutin P, Tremblay R (1964) Extraction of bitumen and oil from Athabaska tar sands. Canadian Patents CA680576, 1964-02-18

    Google Scholar 

  2. Tremblay R, Boutin P (1967) Method and apparatus for the separation and recovery of ores. Canadian Patent No. 694547, 1964-09-15

    Google Scholar 

  3. Wheeler DA (1985) Column Flotation – the original column. In Proceedings of 2nd Latin American Congress in Froth Flotation (S.H.Castro, J.Alvarez Eds.) 19-23 August, Chile. Also in Developments in Mineral Processing, Vol.9, Elsevier 1988, 17–40

    Google Scholar 

  4. Cienski T, Coffin V (1981) Column flotation operation at Mines Gaspé molybdenum circuit. Proceedings of the 13th Annual Meeting of the Canadian Mineral Processors, CIM, Ottawa (Canada), 240–262

    Google Scholar 

  5. Finch JA, Dobby G (1990) Column flotation. Pergamon Press, Oxford

    Google Scholar 

  6. Clingan BV, McGregor DR (1987) Column flotation experience at Magma Copper Co. Minerals and Metallurgical Processing 3: 121–125

    Google Scholar 

  7. Yianatos JB, Finch JA, Laplante AR (1987) The cleaning action in column flotation froths. Trans. of the Institution of Mining and Metallurgy, Section C96, C199–C205

    Google Scholar 

  8. Gorain BK, Franzidis J-P, Manlapig EV (1997) Studies on impeller type, impeller speed and air flow rate in an industrial-scale flotation cell - Part 4: Effect of bubble surface area flux on flotation performance. Minerals Engineering 10(4):367–379

    Article  Google Scholar 

  9. Hernandez-Aguilar JR, Rao SR, Finch JA (2005) Testing the k-Sb relationship at the microscale of laboratory. Minerals Engineering 18:591–598

    Article  Google Scholar 

  10. Kratch W, Vallebuona G, Casali A (2005) Rate constant modeling for batch flotation, as a function of gas dispersion properties. Minerals Engineering 18:1067–1076

    Article  Google Scholar 

  11. Nesset JE, Hernandez-Aguilar J, Acuña C, Gomez CO, Finch, JA (2006) Some gas dispersion characteristics of mechanical flotation machines. Minerals Engineering 19:807–815

    Article  Google Scholar 

  12. Dobby GS, Finch JA (1986) Particle collection in columns - Gas rate and bubble size effects. Canadian Metallurgical Quarterly 25:9–13

    Google Scholar 

  13. Finch JA, Nesset JE, Acuña C (2008) Role of frother on bubble production and behaviour in flotation. Minerals Engineering 21:949–957

    Article  Google Scholar 

  14. Laskowski JS (2003) Fundamental properties of flotation frothers. In: Lorenzen, L., Bradshaw, D.J. (Eds.), Proceedings XXIInd International Mineral Processing Congress. S. African IMM, 788–797

    Google Scholar 

  15. Finch JA, Gelinas S, Moyo P (2006) Frother-related research at McGill University. Minerals Engineering, 19:726–733

    Article  Google Scholar 

  16. Azgomi F, Gomez CO, Finch JA (2007) Correspondence of gas hold-up and bubble size in presence of different frothers. International Journal of Mineral Processing 83(1–2):1–11

    Article  Google Scholar 

  17. Maldonado M, Desbiens A, del Villar R, Aguilera R (2009) On-line estimation of frother concentration in flotation processes. Proceedings of the 48th Conference of Metallurgists COM09 (C. Gomez, Eds), August 23–26, Sudbury (Canada)

    Google Scholar 

  18. del Villar R, Pérez R, D´ıaz G (1995) Improving pulp level detection in a flotation column using a neural network algorithm. Proceedings of the 27th Annual Meeting of the Canadian Mineral Processor, CIM, Ottawa (Canada), 83–100

    Google Scholar 

  19. Moys MH, Finch JA (1988) Developments in the control of flotation columns. International Journal of Mineral Processing 23:265–278

    Article  Google Scholar 

  20. Gomez CO, Uribe-Salas A, Finch JA, Huls BJ (1989) A level detection probe for industrial flotation columns. Proceedings of an International Symposium of Complex Ores (B.J. Huls, G.E. Agar and D.B. Hyma, Eds), Vol.II, Halifax (Canada), 325–334

    Google Scholar 

  21. del Villar R, Grégoire M, Pomerleau A (1999) Automatic control of a laboratory flotation column. Minerals Engineering 12: 291–308

    Article  Google Scholar 

  22. Uribe-Salas A, Leroux M, Gomez CO, Finch JA, Huls BJ (1991) A conductivity technique for level detection in flotation cells. Proceedings of an International Conference on Column Flotation, Column’91. (B.J. Huls, G.E. Agar and D.B. Hyma Eds), Sudbury (Canada). Vol. II. 467–478

    Google Scholar 

  23. Pérez-Garibay R, del Villar R, Flament F (1993) Level detection in a flotation column using an artificial neural network. Proceeding of the XXIV APCOM Conference (J. Elbrond, X. Tang Eds). Montreal (Canada), 174–181

    Google Scholar 

  24. Maldonado M, Desbiens A, del Villar R (2008) An update on the estimation of the froth depth using conductivity measurements. Minerals Engineering 21:935–939

    Google Scholar 

  25. Uribe-Salas A, Gomez CO, Finch JA (1991) Bias detection in flotation columns. Column’91- Proceedings of an International Conference on Column Flotation. Vol.2 (G.E. Agar, B.J. Huls, D.B. Hyma Eds), Canadian Institute of Mining, Metallurgy and Petroleum, Sudbury (Ontario), 391–407

    Google Scholar 

  26. Moys MH, Finch JA (1988) The measurement and control of level in flotation columns. Proceedings of an International Symposium on Column Flotation, EMI Annual Meeting (K.V.S. Sastry Ed.), Phoenix (USA), 90–107

    Google Scholar 

  27. Pérez-Garibay R, del Villar R (1998) Estimation of bias and entrainment in flotation columns using conductivity measurements. Canadian Metallurgical Quarterly 36(5):299–307

    Article  Google Scholar 

  28. Vermette H (1997) Mesure du biais dans une colonne de flottation par profils de température et conductivité. M.Sc. thesis, Département de mines et métallurgie, Université Laval, Québec City (Canada)

    Google Scholar 

  29. Aubé V (2003) Validation semi-industrielle des capteurs de profondeur d’écume et du différentiel d’eau dans une colonne de flottation. M.Sc. thesis, Département de mines et métallurgie, Université Laval, Québec City (Canada)

    Google Scholar 

  30. Bouchard J, Desbiens A, del Villar R (2005) Recent advances in bias and froth depth control in flotation columns. Minerals Engineering 18:709–720

    Article  Google Scholar 

  31. Desbiens A, del Villar R, Milot M (1998) Identification and gain-scheduled control of a pilot flotation column. 9th IFAC Symp. on Automation in Mining, Mineral & Metal Processing, Cologne (Germany), 337–342

    Google Scholar 

  32. Maldonado M, Desbiens A, del Villar R, Chirinos J (2008) On-line bias estimation using conductivity measurements. Minerals Engineering 21:851–855

    Article  Google Scholar 

  33. Maldonado M, Desbiens A, del Villar R (2008) Decentralized control of a pilot flotation column: a 3X3 system. Canadian Metallurgical Quarterly 47:377–386

    Google Scholar 

  34. Maldonado M, Desbiens A, del Villar R (2009) Potential use of model predictive control for optimizing the column flotation process. International Journal of Mineral Processing 93(1):26–33

    Article  Google Scholar 

  35. Carvalho MT, Duräo F (2002) Control of a flotation column using fuzzy logic inference. Fuzzy Sets and Systems 125:121–133

    Article  MATH  MathSciNet  Google Scholar 

  36. Persechini MAM, Peres AEC, Jota FG (2004) Control strategy for a column flotation process. Control Engineering Practice 12:963–976

    Article  Google Scholar 

  37. Nunez E, Desbiens A, del Villar R, Duchesne C (2006) Multivariable predictive control of a pilot flotation column. Part 1: Online sensors for froth depth and air hold-up. International Conference on Mineral Process Modelling, Simulation and Control (E. Yalcin and H. Shang, Eds). Sudbury, Ontario (Canada), 291–301

    Google Scholar 

  38. Uribe-Salas A (1991) Process measurements in flotation columns using electrical conductivity. Ph.D. thesis, Department of Mining and Metallurgical Engineering, McGill University, Montreal (Canada)

    Google Scholar 

  39. Marchese M, Uribe-Salas A, Finch JA (1992) Measurement of gas holdup in a three-phase concurrent down-flow column. Chemical Engineering Science 47(13–14):3475–3482

    Article  Google Scholar 

  40. Perez-Garibay R, del Villar R (1999) On-line gas hold-up measurement in flotation columns. Canadian Metallurgical Quarterly 38(2):141–148

    Article  Google Scholar 

  41. Arizmendi-Morquecho AM, Perez-Garibay R, Uribe-Salas A, Nava-Alonso F (2002) Online solids hold-up measurement in mineral slurries by standard addition method. Minerals Engineering 15(1-2):61–64

    Article  Google Scholar 

  42. Taveras FJ, Gomez CO, Finch JA (1996) A novel gas hold-up probe and applications in flotation columns. Trans of I.M.M., Sect. C 105:C99–C104

    Google Scholar 

  43. O’Keefe C, Viega J, Fernald M (2007) Application of passive sonar technology to mineral processing and oil sands application. Proceedings of the 39th Annual Meeting of the Canadian Mineral Processors, CIM, Ottawa (Canada), 429–457

    Google Scholar 

  44. Gorain BK, Franzidis J-P, Manlapig EV (1995) Studies on impeller type, impeller speed and air flow rate in an industrial-scale flotation cell – Part 2: Effect on gas hold-up. Minerals Engineering 12:1557–1570

    Article  Google Scholar 

  45. Power A, Franzidis JP, Manlapig EV (2000) The characterization of hydrodynamic conditions in industrial flotation cells. In Proceedings of AusIMM 7th Mill Operators Conference, Australasian Institute of Mining and Metallurgy, Kalgoorlie, 243–255

    Google Scholar 

  46. Deglon DA, Egya-Mensah D, Franzidis, JP (2000) Review of hydrodynamics and gas dispersion properties in flotation cells in South African platinum concentrators. Minerals Engineering 13(3):235–244

    Article  Google Scholar 

  47. Yianatos JB, Bergh L, Condori P, Aguilera J (2001) Hydrodynamic and metallurgical characterization of industrial flotation banks for control purposes Minerals Engineering 14(9):1033–1046

    Article  Google Scholar 

  48. Grau R, Heiskanen K (2003) Gas dispersion measurements in flotation cell. Minerals Engineering 16:1081–1089

    Article  Google Scholar 

  49. Randall EW, Goodall CM, Fairlamb PM, Dold PL, O’Connor CT (1989) A method for measuring the sizes of bubbles in two- and three-phase systems. Journal of Physics, Section E, Scientific Instrumentation 22:827–833

    Article  Google Scholar 

  50. Tucker JP, Deglon DA, Franzidis JP, Harris MG, O’Connors CT (1994) An evolution of a direct method of bubble size distribution measurement in a laboratory batch flotation cell. Minerals Engineering 7(5-6):667–680

    Article  Google Scholar 

  51. Chen F, Gomez CO, Finch JA (2001) Bubble size measurement in flotation machines. Minerals Engineering 13(10):1049-1057

    Google Scholar 

  52. Bartolacci G, Ourriban M, Lockhart A, Michaud F, Faucher A, Knutila D, Finch JA, Fortin A, Goyette G (2007) Effect of process conditions on froth stability in an industrial copper flotation circuit. In Proceedings of the Sixth International Copper Conference (R. del Villar, J.E. Nesset, C.O. Gomez, A.W. Stradling Eds), August 25–30, Toronto (Canada), Vol. 2., 221–232

    Google Scholar 

  53. Grau R, Heiskanen K (2002) Visual technique for measuring bubble size in flotation machines. Minerals Engineering 15:507–513

    Article  Google Scholar 

  54. Maldonado M, Desbiens A, del Villar R, Girgin EH, Gomez CO (2008) On-line estimation of bubble size distributions using gaussian mixture models. Proceedings of V International Mineral Processing Seminar, Procemin 2008 (R. Kuyvenhoven, C.O. Gomez and A. Casali Eds), Santiago (Chile). October 22–24, 389–398

    Google Scholar 

  55. Rodrigues R, Rubio J (2003) New basis for measuring the size distribution of bubbles. Minerals Engineering 16:757–765

    Article  Google Scholar 

  56. Couto HJB, Nunez DG, Neumann R, França SCA (2009) Micro-bubble size distribution measurements by laser diffraction technique. Minerals Engineering 22:330–335

    Article  Google Scholar 

  57. Berton A, Hodouin D (2003) Linear and bilinear fault detection and diagnosis based on energy and mass balance equations. Control Engineering Practice 11:103–113

    Article  Google Scholar 

  58. Gertler J (1998) Fault detection and diagnosis in engineering systems. Marcel Dekker, New York

    Google Scholar 

  59. Romagnoli JA, Sanchez MC (2000) Data processing and reconciliation for chemical process operations. Academic Press

    Google Scholar 

  60. Kailath T, Sayed AH, Hassibi B (2000) Linear estimation. Prentice-Hall, New Jersey

    Google Scholar 

  61. Bergh LG, Yianatos JB, Cartes F (1996) Hierarchical control strategy at el Teniente flotation columns. Proceedings of International Conference on Column Flotation’96, Montreal (Canada), 369–380

    Google Scholar 

  62. Bergh LG, Yianatos JB, Acuna C, Perez H, Lopez F (1999) Supervisory control at Salvador flotation columns. Minerals Engineering, 12:733–744

    Article  Google Scholar 

  63. Edgar T, Himmelblau DM (2001) Optimization of chemical processes. McGraw-Hill, 2nd edn

    Google Scholar 

  64. Bergh LG, Yianatos JB (2003) Flotation column automation. Control Engineering Practice 11:67–72

    Article  Google Scholar 

  65. Bouchard J, Desbiens A, del Villar R, Nunez E (2009) Column flotation simulation and control: An overview. Minerals Engineering 22:519–522

    Article  Google Scholar 

  66. Ljung L (1999) System identification - Theory for the user. Prentice Hall, 2nd edn

    Google Scholar 

  67. Verhaegen M, Verdult V (2007) Filtering and system identification - a least squares approach. Cambridge University Press, New York

    Book  MATH  Google Scholar 

  68. Chuk OD, Mut V, Núñez E, Gutierrez L (2001) Multivariable predictive control of froth depth and gas holdup in column flotation. 10th IFAC Symposium on Automation in Mining, Mineral & Metal Processing, Tokyo, Japan, 87–91

    Google Scholar 

  69. Nunez E, Desbiens A, del Villar R, Duchesne C (2006) Multivariable predictive control of a pilot flotation column. Part 2: identification and control. International Conference on Mineral Process Modelling, Simulation and Control, Sudbury, Ontario, Canada, 291–301

    Google Scholar 

  70. Liu JJ, MacGregor JF (2008) Froth-based modeling and control of flotation processes. Minerals Engineering 21:642–651

    Article  Google Scholar 

  71. Barria A, Valdebenito M (2008) Implementation of rougher flotation control system at Codelco Chile, Andina division. Procemin2008, V International Mineral Processing Seminar, Santiago, Chile, 215–220

    Google Scholar 

  72. Cortés G, Verdugo M, Fuenzalida R, Cerda J, Cubillos E (2008) Rougher flotation multivariable predictive control; Concentrator A-1 division Codelco Norte. Procemin2008, V International Mineral Processing Seminar, Santiago, Chile, 315–325

    Google Scholar 

  73. Moilanen J, Remes A (2008) Control of the flotation process. Procemin2008, V International Mineral Processing Seminar, Santiago, Chile, 305–313

    Google Scholar 

  74. Camacho EF, Bordons C (2004) Model predictive control. Springer-Verlag, London

    MATH  Google Scholar 

  75. Maciejowski J (2002) Predictive control with constraints. Prentice Hall, New York

    Google Scholar 

  76. Rossiter JA (2003) Model-based predictive control: a practical approach. CRC Press

    Google Scholar 

  77. Qin SJ, Badgwell TA (2003) A survey of industrial model predictive control technology. Control Engineering Practice 11:733–764

    Article  Google Scholar 

  78. Ameluxen R, Llerena R, Dustan P, Huls B (1988) Mechanics of column flotation operation. SME Annual Meeting Column Flotation’88, Society of Mining, Metallurgy and Exploration, Phoenix, Arizona, 149–155

    Google Scholar 

  79. Barrière PA, Dumont F, Desbiens A (2001) Using semi-physical models for better control. Part 2: nonlinear control of a pilot flotation column. 10th IFAC Symposium on Automation in Mining, Mineral & Metal Processing, Tokyo, Japan, 131–136

    Google Scholar 

  80. Bergh LG, Yianatos JB, Leiva C (1998) Fuzzy supervisory control of flotation columns. Minerals Engineering 11:739–748

    Article  Google Scholar 

  81. Hirajima T, Takamori T, Tsunekawa M, Matsubara T, Oshima K, Imai T (1991) The application of fuzzy logic to control concentrate grade in column flotation at Tayoha mines. Proceedings of International Conference on Column Flotation’91 vol.2, Sudbury, Canada, 375–389

    Google Scholar 

  82. Kosick G, Dobby GS, Young P (1991) Columnex A powerful and affordable control system for column flotation. Proc. of Intern. Conf. on Column Flotation’91 vol. 2, Sudbury, Canada, 359–373

    Google Scholar 

  83. McKay JD, Ynchausti RA (1996) Expert supervisory control of flotation columns, Proceedings of International Conference on Column Flotation’96, 353–367

    Google Scholar 

  84. Milot M, Desbiens A, del Villar R, Hodouin D (2000) Identification and multivariable nonlinear predictive control of a pilot flotation column. XXI International Mineral Processing Congress, Roma (Italy), A3.120–A3.127

    Google Scholar 

  85. Pu M, Gupta Y, Taweel AA (1991) Model predictive control of flotation columns. Proc. of Intern. Conf. on Column Flotation’91 vol. 2, Sudbury, Canada, 467–478

    Google Scholar 

  86. Yianatos JB, Bergh LG (1995) Troubleshooting industrial flotation columns. Minerals Engineering, 8:1593–1606

    Article  Google Scholar 

  87. Desbiens A, del Villar R, Poulin E (2009) Real-time optimization of flotation column operation. Collaborative Research and Development Grant, NSERC, Canada

    Google Scholar 

  88. Duchesne C, Bouajila A, Bartolacci G, Pelletier P, Breau Y, Fournier J, Girard D (2003) Application of multivariate image analysis (MIA) to predict concentrate grade in froth flotation processes. Proceedings of 35th Annual Meeting of the Canadian Mineral Processors, CIM, Ottawa, Canada, 51–526

    Google Scholar 

  89. Liu J, McGregor J, Duchesne C, Bartolacci G (2005) Flotation froth monitoring using multiresolutional multivariate image analysis. Minerals Engineering 18:65–76

    Article  Google Scholar 

  90. Bartolacci G, Pelletier P, Tessier J, Duchesne C, Bossé PA, Fournier J (2006) Application of numerical image analysis to process diagnosis and physical parameter measurement in mineral processes - Part I: Flotation control based on froth textural characteristics. Minerals Engineering 19:734 –747

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Limited

About this chapter

Cite this chapter

del Villar, R., Desbiens, A., Maldonado, M., Bouchard, J. (2010). Automatic Control of Flotation Columns. In: Sbárbaro, D., del Villar, R. (eds) Advanced Control and Supervision of Mineral Processing Plants. Advances in Industrial Control. Springer, London. https://doi.org/10.1007/978-1-84996-106-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-106-6_6

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-105-9

  • Online ISBN: 978-1-84996-106-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics