Brain–Computer Interfaces



This chapter provides a general introduction to brain–computer interfaces (BCIs). It outlines general principles of BCI systems and the need for general-purpose BCI software. It also gives an overview of the BCI2000 system and describes the target audience for BCI2000 generally and this book specifically.


Amyotrophic Lateral Sclerosis Computer Interface Brain Signal BCI2000 System Cursor Control 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Birbaumer, N., Ghanayim, N., Hinterberger, T., Iversen, I., Kotchoubey, B., Kübler, A., Perelmouter, J., Taub, E., Flor, H.: A spelling device for the paralysed. Nature 398(6725), 297–298 (1999) CrossRefGoogle Scholar
  2. 2.
    Chen, Y.L., Tang, F.T., Chang, W.H., Wong, M.K., Shih, Y.Y., Kuo, T.S.: The new design of an infrared-controlled human–computer interface for the disabled. IEEE Trans. Rehabil. Eng. 7, 474–481 (1999) CrossRefGoogle Scholar
  3. 3.
    Damper, R.I., Burnett, J.W., Gray, P.W., Straus, L.P., Symes, R.A.: Hand-held text-to-speech device for the non-vocal disabled. J. Biomed. Eng. 9, 332–340 (1987) CrossRefGoogle Scholar
  4. 4.
    Donoghue, J.P., Nurmikko, A., Black, M., Hochberg, L.R.: Assistive technology and robotic control using motor cortex ensemble-based neural interface systems in humans with tetraplegia. J. Physiol. 579(3), 603–611 (2007). doi: 10.1113/jphysiol.2006.127209 CrossRefGoogle Scholar
  5. 5.
    Farwell, L.A., Donchin, E.: Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr. Clin. Neurophysiol. 70(6), 510–523 (1988) CrossRefGoogle Scholar
  6. 6.
    Ferguson, K.A., Polando, G., Kobetic, R., Triolo, R.J., Marsolais, E.B.: Walking with a hybrid orthosis system. Spinal Cord 37, 800–804 (1999) CrossRefGoogle Scholar
  7. 7.
    Gao, X., Xu, D., Cheng, M., Gao, S.: A BCI-based environmental controller for the motion-disabled. IEEE Trans. Neural Syst. Rehabil. Eng. 11(2), 137–140 (2003). doi: 10.1109/TNSRE.2003.814449 CrossRefGoogle Scholar
  8. 8.
    Gerhardt, L., Sabolcik, R.: Eye tracking apparatus and method employing grayscale threshold values. US Patent 5,481,622, 1996 Google Scholar
  9. 9.
    Grauman, K., Betke, M., Gips, J., Bradski, G.: Communication via eye blinks – detection and duration analysis in real time. In: 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1010–1017. IEEE Comput. Soc., Los Alamitos (2001) Google Scholar
  10. 10.
    Hochberg, L.R., Serruya, M.D., Friehs, G.M., Mukand, J.A., Saleh, M., Caplan, A.H., Branner, A., Chen, D., Penn, R.D., Donoghue, J.P.: Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442(7099), 164–171 (2006). doi: 10.1038/nature04970 CrossRefGoogle Scholar
  11. 11.
    Hoffer, J.A., Stein, R.B., Haugland, M.K., Sinkjaer, T., Durfee, W.K., Schwartz, A.B., Loeb, G.E., Kantor, C.: Neural signals for command control and feedback in functional neuromuscular stimulation: a review. J. Rehabil. Res. Dev. 33, 145–157 (1996) Google Scholar
  12. 12.
    Kennedy, P.R., Bakay, R.A., Moore, M.M., Goldwaithe, J.: Direct control of a computer from the human central nervous system. IEEE Trans. Rehabil. Eng. 8(2), 198–202 (2000) CrossRefGoogle Scholar
  13. 13.
    Kilgore, K.L., Peckham, P.H., Keith, M.W., Thrope, G.B., Wuolle, K.S., Bryden, A.M., Hart, R.L.: An implanted upper-extremity neuroprothesis: follow-up of five patients. J. Bone Jt. Surg. 79-A, 533–541 (1997) Google Scholar
  14. 14.
    Kübler, A., Kotchoubey, B., Hinterberger, T., Ghanayim, N., Perelmouter, J., Schauer, M., Fritsch, C., Taub, E., Birbaumer, N.: The Thought Translation Device: a neurophysiological approach to communication in total motor paralysis. Exp. Brain Res. 124(2), 223–232 (1999) CrossRefGoogle Scholar
  15. 15.
    Kübler, A., Nijboer, F., Mellinger, J., Vaughan, T.M., Pawelzik, H., Schalk, G., McFarland, D.J., Birbaumer, N., Wolpaw, J.R.: Patients with ALS can use sensorimotor rhythms to operate a brain–computer interface. Neurol. 64(10), 1775–1777 (2005). doi: 10.1212/01.WNL.0000158616.43002.6D CrossRefGoogle Scholar
  16. 16.
    Kubota, M., Sakakihara, Y., Uchiyama, Y., Nara, A., Nagata, T., Nitta, H., Ishimoto, K., Oka, A., Horio, K., Yanagisawa, M.: New ocular movement detector system as a communication tool in ventilator-assisted Werdnig–Hoffmann disease. Dev. Med. Child Neurol. 42, 61–64 (2000) CrossRefGoogle Scholar
  17. 17.
    LaCourse, J.R., Hludik, F.C. Jr.: An eye movement communication–control system for the disabled. IEEE Trans. Biomed. Eng. 37, 1215–1220 (1990) CrossRefGoogle Scholar
  18. 18.
    McFarland, D.J., Neat, G.W., Wolpaw, J.R.: An EEG-based method for graded cursor control. Psychobiol. 21, 77–81 (1993) Google Scholar
  19. 19.
    Millán, J. del R., Renkens, F., Mouriño, J., Gerstner, W.: Noninvasive brain-actuated control of a mobile robot by human EEG. IEEE Trans. Biomed. Eng. 51(6), 1026–1033 (2004) CrossRefGoogle Scholar
  20. 20.
    Müller, K., Blankertz, B.: Toward noninvasive brain–computer interfaces. IEEE Signal Process. Mag. 23(5), 126–128 (2006) CrossRefGoogle Scholar
  21. 21.
    Pfurtscheller, G., Flotzinger, D., Kalcher, J.: Brain–computer interface – a new communication device for handicapped persons. J. Microcomput. Appl. 16, 293–299 (1993) CrossRefGoogle Scholar
  22. 22.
    Pfurtscheller, G., Guger, C., Müller, G., Krausz, G., Neuper, C.: Brain oscillations control hand orthosis in a tetraplegic. Neurosci. Lett. 292(3), 211–214 (2000) CrossRefGoogle Scholar
  23. 23.
    Santhanam, G., Ryu, S.I., Yu, B.M., Afshar, A., Shenoy, K.V.: A high-performance brain–computer interface. Nature 442(7099), 195–198 (2006). doi: 10.1038/nature04968 CrossRefGoogle Scholar
  24. 24.
    Serruya, M., Hatsopoulos, N., Paninski, L., Fellows, M., Donoghue, J.: Instant neural control of a movement signal. Nature 416(6877), 141–142 (2002) CrossRefGoogle Scholar
  25. 25.
    Sutter, E.E.: The brain response interface: communication through visually guided electrical brain responses. J. Microcomput. Appl. 15, 31–45 (1992) CrossRefGoogle Scholar
  26. 26.
    Taylor, D.M., Tillery, S.I., Schwartz, A.B.: Direct cortical control of 3D neuroprosthetic devices. Science 296, 1829–1832 (2002) CrossRefGoogle Scholar
  27. 27.
    Vaughan, T.M., McFarland, D.J., Schalk, G., Sarnacki, W.A., Krusienski, D.J., Sellers, E.W., Wolpaw, J.R.: The Wadsworth BCI research and development program: at home with BCI. IEEE Trans. Neural Syst. Rehabil. Eng. 14(2), 229–233 (2006) CrossRefGoogle Scholar
  28. 28.
    Wessberg, J., Stambaugh, C.R., Kralik, J.D., Beck, P.D., Laubach, M., Chapin, J.K., Kim, J., Biggs, S.J., Srinivasan, M.A., Nicolelis, M.A.: Real-time prediction of hand trajectory by ensembles of cortical neurons in primates. Nature 408, 361–365 (2000) CrossRefGoogle Scholar
  29. 29.
    Wolpaw, J., McFarland, D.: Control of a two-dimensional movement signal by a non-invasive brain–computer interface in humans. Proc. Natl. Acad. Sci. USA 101, 17849–17854 (2004) CrossRefGoogle Scholar
  30. 30.
    Wolpaw, J.R., McFarland, D.J., Neat, G.W., Forneris, C.A.: An EEG-based brain–computer interface for cursor control. Electroencephalogr. Clin. Neurophysiol. 78(3), 252–259 (1991) CrossRefGoogle Scholar
  31. 31.
    Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain–computer interfaces for communication and control. Electroencephalogr. Clin. Neurophysiol. 113(6), 767–791 (2002) Google Scholar

Copyright information

© Springer-Verlag London Limited 2010

Authors and Affiliations

  1. 1.Wadsworth CenterNew York State Department of HealthAlbanyUSA
  2. 2.Institute of Medical Psychology & Behavioral NeurobiologyUniversity of TübingenTübingenGermany

Personalised recommendations