Skip to main content

Background to Laser Design and General Applications

  • Chapter
Laser Material Processing

Abstract

The first part of this chapter briefly describes the basic principles of the physics and the construction of a laser. The second part of the chapter gives a sketch of the numerous ways in which the laser can be used other than as a material processing tool. The whole chapter is aimed at providing a review of the overall state of laser science and applications, which should be useful for an engineer of laser material processing. There are several textbooks available on laser physics which deal with the subject in detail [1–5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Jell-O® is a registered trademark of Kraft Foods Holdings Inc., Three Lakes Drive, Northfield, Illinois, 60093, USA. www.kraftfoods.com

  2. 2.

    Xerox® is a registered trademark of the Xerox Corporation. www.xerox.com

References

  1. Maitland A, Dunn MH (1969) Laser physics. North-Holland, Amsterdam

    Google Scholar 

  2. Verdeyen JT (1981) Laser electronics. Prentice-Hall, Upper Saddle River

    Google Scholar 

  3. Duley WW (1976) CO2 lasers: theory and applications. Academic, New York

    Google Scholar 

  4. Thyagrajan K, Ghatak AK (1981) Lasers. Theory and applications. Plenum, New York

    Google Scholar 

  5. Tarasov LV (1983) Laser physics (trans: Wadhwa RS). MIR, Moscow

    Google Scholar 

  6. Schawlow AL, Townes C (1958) Infrared and optimal masers. Phys Rev 112:1940–1949

    Article  Google Scholar 

  7. Einstein A (1916) Strahlungs-emission und -absorption nach der Quantentheorie. Verh Dtsch Phys Ges 18:318–323

    Google Scholar 

  8. Hänsch TA, Pernier M, Schawlow AL (1971) Laser action of dyes in gelatin. IEEE J Quantum Electron QE-7:47

    Google Scholar 

  9. http://www.cord.org/cm/leot/course01_mod06

    Google Scholar 

  10. Bass M (ed) (1995) Handbook of optics. McGraw-Hill, New York

    Google Scholar 

  11. Kogelnik H, Li T (1996) Laser beams and resonators. Appl Phys 5(10):1550

    Google Scholar 

  12. Crafer RC, Oakley PJ (1993) Laser processing in manufacturing. Chapman and Hall, New York

    Google Scholar 

  13. Hall DR, Baker HJ (1994) Diffusion cooled large surface area CO2/CO lasers. Proc SPIE 2505:12–19

    Google Scholar 

  14. Duley WW (1996) UV lasers. Effects and applications in material science. Cambridge University Press, Cambridge

    Book  Google Scholar 

  15. Gitin M, Reingrube J (1995) Diode pumped solid state lasers show a bright future. Ind Laser Rev Dec 8–10

    Google Scholar 

  16. Hill P (2009) Fibre laser hits 2 kW record mark. Opto & Laser Europe Jul/Aug 9

    Google Scholar 

  17. Wintner E (1998) Semiconductor lasers. In: Schuöcker D (ed) Handbook of the Eurolaser Academy, vol 1. Chapman and Hall, New York, chap 6

    Google Scholar 

  18. Hewett J (2002) Opto & Laser Europe May 41–43

    Google Scholar 

  19. Opto & Laser Europe (2004) Photonics to revolutionise the world. Opto & Laser Europe Jan 24–25

    Google Scholar 

  20. Kelly J (1995) Beam guides machines through complex curves. Opto & Laser Europe 24:21–22

    Google Scholar 

  21. Hewitt J (2004) Unpickable optical lock aims to foil car criminals. Opto & Laser Europe Apr 11

    Google Scholar 

  22. Steinmetz CR (1990) Laser interferometry operates at submicron level. Laser Focus World Jul 93–98

    Google Scholar 

  23. Hariharan P, Creath K (2004) Interferometry. In: Brown TG et al. (eds) The optics encyclopedia. Wiley-VCH, Weinheim, p 954

    Google Scholar 

  24. Morrison DC (1990) Laser technology enlists the anti-drug campaign. Lasers and Optronics May 31–32

    Google Scholar 

  25. Waggoner J (1990) SDIO says laser radar works. Photonics Spectra Jul 18

    Google Scholar 

  26. Nordstrom RJ, Berg LJ (1990) Coherent laser radar: techniques and applications. Lasers and Optronics Jun 51–56

    Google Scholar 

  27. Arnt W (1990) Laser ranging keeps cars apart. Photonics Spectra Jul 133–134

    Google Scholar 

  28. Reunert MK, Yoshiba B (1996) Fibre optic gyroscope: a new sensor for robotics. Sens Rev 16(1):32–34

    Article  Google Scholar 

  29. Martha H (1993) Fiber optic gyros help Tokyo drivers navigate. Photonics Spectra 27(1):18

    Google Scholar 

  30. Carts YA (1990) Media lab develops holographic video. Laser Focus World May 95

    Google Scholar 

  31. Benton SA (1969) Hologram reconstructions with extended incoherent sources. J Opt Soc Am 59:1545

    Google Scholar 

  32. Butters JN (1983) Speckle interferometry and other technologies. In: Proceedings of the 1st international conference on lasers in manufacturing (LIM1), Brighton, November 1983, pp 149–160

    Google Scholar 

  33. Opto & Laser Europe (2001) Speckle technique tracks blood flow inside brain. Opto & Laser Europe Aug 14

    Google Scholar 

  34. Hogan H (2008) No longer walking the line. Photonics Spectra Jun 22–23

    Google Scholar 

  35. Kinkade K (2004) Laser reveals critical changes in the earth’s atmosphere. Laser Focus World May 154

    Google Scholar 

  36. Anscombe N (2007) Crop spraying system targets weeds. Photonics Spectra Feb 36–37

    Google Scholar 

  37. Cowdery E (2002) Keeping an eye out for bad marks. Materials World Jun 31–32

    Google Scholar 

  38. Tsufura L (1995) Barcode scanning: on going evolution and development. Lasers and Optronics Jul 25–27

    Google Scholar 

  39. Anonymous (1996) Laser paint assists in search and rescue. In: Photonics design and applications handbook. Laurin, Pittsfield, p H515

    Google Scholar 

  40. Hirleman D (2002) Lasers – the non-destructive answer to dust investigation. Materials World Jun 30

    Google Scholar 

  41. Hogan H (2002) Laser system detects explosives remotely. Photonics Spectra Apr 35

    Google Scholar 

  42. Higgins TV (1995) Optical storage lights the multi-media future. Laser Focus World Sep 103–111

    Google Scholar 

  43. Milster TD (2004) Data storage, optical. In: Brown TG et al (eds) The optics encyclopedia. Wiley-VCH, Weinheim, pp 227–274

    Google Scholar 

  44. Lenth B (1994) Optical storage: a growth mass market for lasers. Laser Focus World Dec 87–91

    Google Scholar 

  45. Hewett J (2004) Holographic drives set for long awaited debut. Opto & Laser Europe Jul/Aug 15–17

    Google Scholar 

  46. Higgins TV (1995) Light speed communications. Laser Focus World Aug 67–74

    Google Scholar 

  47. Anscombe N (2002) Defending the skies: the airborne laser. Optics & Laser Europe May 33–34

    Google Scholar 

  48. Rothacher T, Lütthy W, Weber HP (2004) Demining with Nd:YAG laser. Rev Sci Instrum 75(4):1078–1080

    Article  Google Scholar 

  49. Heller A (2004) Laser burrows into the earth to destroy landmines. https://www.llnl.gov/str/October04/Rotter.html

    Google Scholar 

  50. Bibeau C, Rhodes MA, Atherton J (2006) World’s largest laser. Photonics Spectra Jun 50–60

    Google Scholar 

  51. Wallace J (2003) Laser pulse delivers ignition-sized punch. Laser Focus World Aug 24–28

    Google Scholar 

  52. Hatcher M (2002) Vulcan upgrade: power to the people. Opto & Laser Europe May 30–31

    Google Scholar 

  53. Laser Focus World (2007) Laser Focus World Jan 82–100

    Google Scholar 

  54. Laser Focus World (2007) Laser Focus World Feb 67–77

    Google Scholar 

  55. Martin WS, Chernock, J.B., U.S. patent # 3,633,126, Multiple internal Reflection Face Pumped Laser

    Google Scholar 

  56. Duarte FJ, Foster DR (2004) Lasers-dye. In: Brown TG et al (eds) The optics encyclopedia. Wiley, New York, p 1082

    Google Scholar 

  57. Techtran Corporation, Lasers in metal working. Techtran Corporation (flyer)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer

About this chapter

Cite this chapter

Steen, W., Mazumder, J. (2010). Background to Laser Design and General Applications. In: Laser Material Processing. Springer, London. https://doi.org/10.1007/978-1-84996-062-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-062-5_2

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-061-8

  • Online ISBN: 978-1-84996-062-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics