Skip to main content

Dereverberation Using LPC-based Approaches

  • Chapter
Speech Dereverberation

Abstract

A class of reverberant speech enhancement techniques involve processing of the linear prediction residual signal following Linear Predictive Coding (LPC). These approaches are based on the assumption that reverberation is mainly confined to the prediction residual and affects the LPC coefficients to a lesser extent. This chapter begins with a study on the effects of reverberation on the LPC parameters where mathematical tools from statistical room acoustics are used in the analysis. Consequently, a general framework for dereverberation using LPC is formulated and several existing methods utilizing this approach are reviewed. Finally, a specific method for processing a reverberant prediction residual is presented in detail. This method uses a combination of spatial averaging and larynx cycle-based temporal averaging. Experiments with a microphone array in a small office demonstrate the dereverberation and noise suppression of the spatiotemporal averaging method, showing up to a 5 dB improvement in segmental SRR and 0.33 in the normalized Bark spectral distortion score.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atal, B., Rabiner, L.: A pattern recognition approach to voiced-unvoiced-silence classification with applications to speech recognition. IEEE Trans. Acoust., Speech, Signal Process. 24(3), 201–212 (1976)

    Article  Google Scholar 

  2. Atal, B.S., Hanauer, S.L.: Speech analysis and synthesis by linear prediction of the speech wave. J. Acoust. Soc. Am. 50(2), 637–655 (1971)

    Article  Google Scholar 

  3. Benesty, J.: Adaptive eigenvalue decomposition algorithm for passive acoustic source localization. J. Acoust. Soc. Am. 107(1), 384–391 (2000)

    Article  Google Scholar 

  4. Bharitkar, S., Hilmes, P., Kyriakakis, C.: Robustness of spatial average equalization: A statistical reverberation model approach. J. Acoust. Soc. Am. 116(6), 3491–3497 (2004)

    Article  Google Scholar 

  5. Brandstein, M.S., Griebel, S.M.: Nonlinear, model-based microphone array speech enhancement. In: S.L. Gay, J. Benesty (eds.) Acoustic Signal Processing For Telecommunication, pp. 261–279. Kluwer Academic Publishers (2000)

    Google Scholar 

  6. Brandstein, M.S., Ward, D.B. (eds.): Microphone arrays: Signal processing techniques and applications, 1 edn. Springer (2001)

    Google Scholar 

  7. Chen, J., Benesty, J., Huang, Y.: Performance of GCC- and AMDF-based time-delay estimation in practical reverberant environments. EURASIP J. on App. Signal Process. 2005(1), 25–36 (2005)

    Article  MATH  Google Scholar 

  8. Chen, J., Benesty, J., Huang, Y.: Time delay estimation in room acoustic environments: an overview. EURASIP J. on App. Signal Process. Special issue on advances in multimicrophone speech processing. 2006, 1–19 (2006)

    Google Scholar 

  9. Deller, J.R., Hansen, J.H.L., Proakis, J.G.: Discrete-time processing of speech signals. Macmillan (1993)

    Google Scholar 

  10. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Stat. Soc., Series B 39(1), 1–38 (1977)

    MATH  MathSciNet  Google Scholar 

  11. Gaubitch, N.D.: Blind identification of acoustic systems and enhancement of reverberant speech. Ph.D. thesis, Imperial College London (2007)

    Google Scholar 

  12. Gaubitch, N.D., Naylor, P.A.: Spatiotemporal averaging method for enhancement of reverberant speech. In: Proc. Int. Conf. on Digital Signal Processing (DSP). Cardiff (2007)

    Google Scholar 

  13. Gaubitch, N.D., Ward, D.B., Naylor, P.A.: Statistical analysis of the autoregressive modeling of reverberant speech. J. Acoust. Soc. Am. 120(6), 4031–4039 (2006)

    Article  Google Scholar 

  14. Gillespie, B.W., Malvar, H.S., Florêncio, D.A.F.: Speech dereverberation via maximumkurtosis subband adaptive filtering. In: Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), vol. 6, pp. 3701–3704 (2001)

    Google Scholar 

  15. Golub, G.H., van Loan, C.F.: Matrix computations, 3 edn. John Hopkins Series in the Mathematical Sciences. John Hopkins University Press (1996)

    Google Scholar 

  16. Griebel, S.M.: A microphone array system for speech source localization, denoising and dereverberation. Ph.D. thesis, Harvard University, Cambridge, Massachusetts (2002)

    Google Scholar 

  17. Griebel, S.M., Brandstein, M.S.: Microphone array speech dereverberation using coarse channel estimation. In: Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), vol. 1, pp. 201–204 (2001)

    Google Scholar 

  18. Gustafsson, T., Rao, B.D., Trivedi, M.: Source localization in reverberant environments: Modeling and statistical analysis. IEEE Trans. Speech Audio Process. 11(6), 791–803 (2003)

    Article  Google Scholar 

  19. Harris, F.J.: On the use of windows for harmonic analysis with the discrete fourier transform. Proc. IEEE 66(1), 51–83 (1978)

    Article  Google Scholar 

  20. Knapp, G.H., Carter, G.C.: The generalized correlation method for estimation of time delay. IEEE Trans. Acoust., Speech, Signal Process. 24(4), 320–327 (1976)

    Article  Google Scholar 

  21. Kuttruff, H.: Room acoustics, 4th edn. Taylor & Francis (2000)

    Google Scholar 

  22. Lim, J.S., Oppenheim, A.V.: All-pole modeling of degraded speech. IEEE Trans. Acoust., Speech, Signal Process. 26(3), 197–210 (1978)

    Article  MATH  Google Scholar 

  23. Lindsey, G., Breen, A., Nevard, S.: SPAR’s archivable actual-word databases. Tech. rep., University College London (1987)

    Google Scholar 

  24. Makhoul, J.: Linear prediction: A tutorial review. Proc. IEEE 63(4), 561–580 (1975)

    Article  Google Scholar 

  25. Makhoul, J.: Spectral linear prediction: Properties and applications. IEEE Trans. Acoust., Speech, Signal Process. 23(3), 283 – 296 (1976)

    Article  MathSciNet  Google Scholar 

  26. Naylor, P.A., Kounoudes, A., Gudnason, J., Brookes, M.: Estimation of glottal closure instants in voiced speech using the dypsa algorithm. IEEE Trans. Audio, Speech, Lang. Process. 15(1), 34–43 (2007)

    Article  Google Scholar 

  27. Nelson, P.A., Elliott, S.J.: Active control of sound. Academic Press (1993)

    Google Scholar 

  28. Rabiner, L.R., Schafer, R.W.: Digital processing of speech signals. Prentice-Hall (1978)

    Google Scholar 

  29. Radlovi´c, B.D., Williamson, R.C., Kennedy, R.A.: Equalization in an acoustic reverberant environment: Robustness results. IEEE Trans. Acoust., Speech, Signal Process. 8(3), 311–319 (2000)

    Google Scholar 

  30. Sambur, M.R., Jayant, N.S.: LPC analysis/synthesis from speech inputs containing quantizing noise or additive white noise. IEEE Trans. Acoust., Speech, Signal Process. 24(6), 488–494 (1976)

    Article  Google Scholar 

  31. Talantzis, F., Ward, D.B.: Robustness of multi-channel equalization in an acoustic reverberant environments:. J. Acoust. Soc. Am. 114(2), 833–841 (2003)

    Article  Google Scholar 

  32. Talantzis, F., Ward, D.B., Naylor, P.A.: Performance analysis of dynamic acoustic source separation in reverberant rooms. IEEE Trans. Audio, Speech, Lang. Process. 14(4), 1378–1390 (2006)

    Article  Google Scholar 

  33. Thomas, M.R.P., Gaubitch, N.D., Gudnason, J., Naylor, P.A.: A practical multichannel dereverberation algorithm using multichannel DYPSA and spatiotemporal averaging. In: Proc. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (2007)

    Google Scholar 

  34. Thomas, M.R.P., Gaubitch, N.D., Naylor, P.A.: Multichannel DYPSA for estimation of glottal closure instants in reverberant speech. In: Proc. European Signal Processing Conf. (EU-SIPCO). Poznan, Poland (2007)

    Google Scholar 

  35. Veen, B.D.V., Buckley, K.M.: Beamforming: A versatile approach to spatial filtering. IEEE Signal Process. Mag. 5(2), 4–24 (1988)

    Google Scholar 

  36. Ward, D.B.: On the performance of acoustic crosstalk cancellation in a reverberant environments:. J. Acoust. Soc. Am. 110(2), 1195–1198 (2001)

    Article  Google Scholar 

  37. Wu, M., Wang, D.: A two-stage algorithm for one-microphone reverberant speech enhancement. IEEE Trans. Audio, Speech, Lang. Process. 14(3), 774–784 (2006)

    Article  Google Scholar 

  38. Yegnanarayana, B., Naik, J.M., Childers, D.G.: Voice simulation: Factors affecting quality and naturalness. In: Proc. Conf. of the Association for Computational Linguists, pp. 530–533. Stanford, California, USA (1984)

    Google Scholar 

  39. Yegnanarayana, B., Prasanna, S.R.M., Rao, K.S.: Speech enhancement using excitation source information. In: Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), vol. 1, pp. 541–544 (2002)

    Google Scholar 

  40. Yegnanarayana, B., Satyanarayana, P.: Enhancement of reverberant speech using LP residual signals. IEEE Trans. Acoust., Speech, Signal Process. 8(3), 267–281 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Limited

About this chapter

Cite this chapter

Gaubitch, N., Thomas, M., Naylor, P. (2010). Dereverberation Using LPC-based Approaches. In: Naylor, P., Gaubitch, N. (eds) Speech Dereverberation. Signals and Commmunication Technology. Springer, London. https://doi.org/10.1007/978-1-84996-056-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-056-4_4

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-055-7

  • Online ISBN: 978-1-84996-056-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics