Advertisement

Algae Energy pp 139-157 | Cite as

Biodiesel from Algae

  • Ayhan Demirbas
  • M. Fatih Demirbas
Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

Continued use of petroleum sourced fuels is nowwidely recognized as unsustainable because of depleting supplies and the contribution of these fuels to the accumulation of carbon dioxide in the environment. Renewable, carbon-neutral transport fuels are necessary for environmental and economic sustainability (Chisti 2007). Biodiesel can be carbon neutral and produced intensively on relatively small areas of marginal land. The quality of the fuel product is comparable to petroleum diesel and can be incorporated with minimal change into the existing fuel infrastructure. Innovative techniques, including the use of industrial and domestic waste as fertilizer, could be applied to further increase biodiesel productivity (Campbell 2008).

Keywords

Sugar Cane Supercritical Fluid Extraction Raceway Pond Petroleum Diesel Petroleum Fuel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aresta, M., Dibenedetto, A., Carone, M., Colonna, T., Fagale, C. 2005. Production of biodiesel from macroalgae by supercritical CO2 extraction and thermochemical liquefaction. Environ Chem Lett 3:136–139.CrossRefGoogle Scholar
  2. Banerjee, A., Sharma, R., Chisti, Y., Banerjee, U.C. 2002. Botryococcus braunii: a renewable source of hydrocarbons and other chemicals. Crit Rev Biotechnol 22:245–279.CrossRefGoogle Scholar
  3. Becker, E.W. 1994. In: Baddiley, J. et al. (eds.). Microalgae: Biotechnology and Microbiology, Cambridge University Press, Cambridge, New York.Google Scholar
  4. Ben-Amotz, A., Tornabene, T. G. 1985. Chemical profile of selected species of macroalgae with emphasis on lipids. J Phycol 21:72–81.CrossRefGoogle Scholar
  5. Benemann, J., Oswald, W. J. 1996. Systems and economic analysis of microalgae ponds for conversion of CO2 to biomass. US DOE, Pittsburgh Energy Technology Center.Google Scholar
  6. Boccard, R., Buchter, L., Casteels, E., Cosentino, E., Dransfield, E., Hood, D. E., Joseph, R. L., Macdougall, D. B., Rhodes, D. N., Schön, L., Tinbergen, B. J., Touraill, C. 1981. Procedures for measuring meat quality characteristic in beef production experiments. Report of a Working Group in the Commission of the European community’s (CEC) Beef Production Research Programme, Livestock Prod Sci 8:385–397.CrossRefGoogle Scholar
  7. Bourne Jr., J. K. 2007. Biofuels: green dreams. Natl Geogr Mag October:41–59.Google Scholar
  8. Bowman, M., Hilligoss, D., Rasmussen, S., Thomas, R. 2006. Biodiesel: a renewable and biodegradable fuel. Hydrocarbon Proc 2006:103–106.Google Scholar
  9. Brown, M. R., Dunstan, G. A., Norwood, S. J., Miller, K. A. 1996. Effects of harvested stage and light on the biochemical composition of the diatom Thalassiosira pseudonana. J Phycol 32:64–73.CrossRefGoogle Scholar
  10. Campbell, M. N. 2008. Biodiesel: algae as a renewable source for liquid fuel. Guelph Eng J 1:2–7.Google Scholar
  11. Cardone, M., Prati, M. V., Rocco, V., Senatore, A. 1998. Experimental analysis of performances and emissions of a diesel engines fuelled with biodiesel and diesel oil blends. Proceedings of MIS–MAC V, Rome, pp. 211–225 [in Italian].Google Scholar
  12. Carlsson, A. S., van Bilen, J. B., Möller, R., Clayton, D. 2007. Mircro- and macro-algae: utility for industrial applications. http://www.epobio.net/pdfs/0709AquaticReport.pdf. Accessed June 2008.Google Scholar
  13. Carvalho, A. P., Meireles, L. A., Malcata, F. X. 2006. Microalgal reactors: a review of enclosed system designs and performances. Biotechnol Prog 22:1490–1506.Google Scholar
  14. Chaumont, D. 2005. Biotechnology of algal biomass production: a review of systems for outdoor mass culture. J Appl Phycol 5:593–604.CrossRefGoogle Scholar
  15. Chisti, Y. 2007. Biodiesel from Microalgae. Biotechnol Adv 25:294–306.CrossRefGoogle Scholar
  16. Chisti, Y. 2008. Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26:126–131.CrossRefGoogle Scholar
  17. Crookes, R. J. 2006. Comparative bio-fuel performance in internal combustion engines. Biomass Bioenergy 30:461–468.CrossRefGoogle Scholar
  18. Demirbas, A. 1998. Fuel properties and calculation of higher heating values of vegetable oils. Fuel 77:1117–1120.CrossRefGoogle Scholar
  19. Demirbas, A. 1999. Proximate and heavy metal composition in chicken meat and tissues. Food Chem 67:27–31.CrossRefGoogle Scholar
  20. Demirbas, A. 2001. Mineral, protein, and fatty acids contents of hazelnut kernels. Energy Educ Sci Technol 7:37–43.Google Scholar
  21. Demirbas, A. 2002. Biodiesel from vegetable oils via transesterification in supercritical methanol. Energy Convers Manage 43:2349–2356.CrossRefGoogle Scholar
  22. Demirbas, A. 2007. Importance of biodiese as transportation fuel. Energy Policy 35:4661–4670.CrossRefGoogle Scholar
  23. Demirbas, A. H. 2009a. Inexpensive oil and fats feedstocks for production of biodiesel. Energy Educ Sci Technol A 23:1–13.Google Scholar
  24. Demirbas, A. 2009b. Production of biodiesel from algae oils. Energy Sources A 31:163–168.CrossRefGoogle Scholar
  25. Dimitrov, K. 2008. Green Fuel technologies: a case study for industrial photosythetic energy capture. Brisbane, Australia. Available from http://www.nanostring.net/Algae/.
  26. Dote, Y., Sawayama, S., Inoue, S., Minowa, T., Yokoyama, Shin-ya. 1994 Recovery of liquid fuel from hydrocarbon-rich microalgae by thermochemical liquefaction. Fuel 73:1855–1857.CrossRefGoogle Scholar
  27. Goldman, J. C., Ryther, J. H. 1977. Mass production of algae: bio-engineering aspects. In: Mitsui, A. et al. (eds.). Biological Solar Energy Conversion, Academic, New York.Google Scholar
  28. Graboski, M. S., McCormick, R. L. 1998. Combustion of fat and vegetable oil derived fuels in Diesel engines. Prog Energy Combust Sci 24:125–164.CrossRefGoogle Scholar
  29. Gray, K. A., Zhao, L., Emptage, M. 2006. Bioethanol. Curr Opin Chem Biol 10:141–146.CrossRefGoogle Scholar
  30. Grobbelaar, J. U. 2000. Physiological and technological considerations for optimising mass algal cultures. J Appl Phycol 12:201–206.CrossRefGoogle Scholar
  31. Haag, A. L. 2007. Algae bloom again. Nature 447:520–521.CrossRefGoogle Scholar
  32. Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M., Darzins, A. 2008. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639.CrossRefGoogle Scholar
  33. Kishimoto, M., Okakura, T., Nagashima, H., Minowa, T., Yokoyama, S., Yamaberi, K. 1994. CO2 fixation and oil production using microalgae. J Ferment Bioeng 78:479–482.CrossRefGoogle Scholar
  34. Knothe, G. 2005. Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Proc Technol 86:1059–1070.CrossRefGoogle Scholar
  35. Kusdiana, D., Saka, S. 2001. Kinetics of transesterification in rapeseed oil to biodiesel fuels as treated in supercritical methanol. Fuel 80:693–698.CrossRefGoogle Scholar
  36. Kyle, D. J., Gladue, R. M. 1991. Eicosapentaenoic acids and methods for their production. International Patent Application, Patent Cooperation Treaty Publication WO 91/14427, 3 October 1991.Google Scholar
  37. Laforgia, D., Ardito, V. 1994. Biodiesel fuelled IDI engines: performances, emissions and heat release investigation. Biores Technol 51:53–59.CrossRefGoogle Scholar
  38. Ma, F., Hanna, M. A. 1999. Biodiesel production: a review. Biores Technol 70:1–15.CrossRefGoogle Scholar
  39. Metzger, P., Largeau, C. 2005. Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl Microbiol Biotechnol 66:486–496.CrossRefGoogle Scholar
  40. Milne, T. A., Evans, R. J., Nagle, N. 1990. Catalytic conversion of microalgae and vegetable oils to premium gasoline, with shape-selective zeolites. Biomass 21:219–232.CrossRefGoogle Scholar
  41. Minowa, T., Yokoya, S. Y., Kishimoto, M., Okakura, T. 1995. Oil production from algae cells of Dunaliella Tereiolata by direct thermochemical liquefaction. Fuel 74:1731–1738.CrossRefGoogle Scholar
  42. Miao, X. L.,Wu, Q. Y., Yang, C. Y. 2004. Fast pyrolysis of microalgae to produce renewable fuels. J Anal Appl Pyrol 71:855–863.CrossRefGoogle Scholar
  43. Negoro, M., Shioji, N., Miyamoto, K., Miura, Y. 1991. Growth of microalgae in high CO2 gas and effects of sox and nox. Appl Biochem Biotechnol 28–29:877–886.CrossRefGoogle Scholar
  44. Ozkurt, I. 2009. Qualifying of safflower and algae for energy. Energy Educ Sci Technol A 23:145–151.Google Scholar
  45. Patil, V., Reitan, K. I., Knudsen, G., Mortensen, L., Kallqvist, T., Olsen, E., Vogt, G., Gislerød, H. R. 2005. Microalgae as source of polyunsaturated fatty acids for aquaculture. Curr Topics Plant Biol 6:57–65.Google Scholar
  46. Paul, P. F. M., Wise, W. S. 1971. The Principle of Gas Extraction. Mills and Boon, London.Google Scholar
  47. Pimentel, D. (ed.). 2008. Biofuels, Solar and Wind as Renewable Energy Systems: Benefits and Risks. Springer, New York.Google Scholar
  48. Pimentel, D., Berger, B., Filiberto, D., Newton, M., Wolfe, B., Karabinakis, B., Clark, S., Poon, E., Abbett, E., Nandagopal, S. 2004. Water resources: agricultural and environmental issues. Bioscience 54:909–918.CrossRefGoogle Scholar
  49. Pradeep, V., Sharma, R. K. 2007. Use of HOT EGR for nox control in a compression ignition engine fuelled with biodiesel from Jatropha oil. Renew Energy 32:1136–1154.CrossRefGoogle Scholar
  50. Pulz, O. 2001. Photobioreactors: production systems for phototrophic microorganisms. Appl Microbiol Biotechnol 57:287–293.CrossRefGoogle Scholar
  51. Rakopoulos, C. D., Antonopoulos, K. A., Rakopoulos, D. C., Hountalas, D. T., Giakoumis, E. G. 2006. Comparative performance and emissions study of a direct injection diesel engine using blends of diesel fuel with vegetable oils or bio-diesels of various origins. Energy Convers Manage 47:3272–3287.CrossRefGoogle Scholar
  52. Richardson, J. W., Outlaw, J. L., Allison, M. 2009. Economics of micro algae oil. 13th ICABR Conference on the Emerging Bio-Economy. Ravello, Italy, 17–20 June 2009.Google Scholar
  53. Schneider, D. 2006. Grow your own?: Would the widespread adoption of biomass-derived transportation fuels really help the environment. Am Sci 94:408–409.Google Scholar
  54. Scott, A., Bryner, M. 2006. Alternative fuels: rolling out next-generation technologies. Chem Week 20–27:17–21.Google Scholar
  55. Sharif Hossain, A. B. M., Salleh, A., Boyce, A. N., Chowdhury, P., Naqiuddin, M. 2008. Biodiesel Fuel Production from Algae as Renewable Energy. Am J Biochem Biotechnol 4:250–254.CrossRefGoogle Scholar
  56. Sheehan, J., Dunahay, T., Benemann, J., Roessler, P. 1998. A Look Back at the U.S. Department of Energy’s Aquatic Species Program – Biodiesel from Algae. National Renewable Energy Laboratory (NREL) Report: NREL/TP-580-24190. Golden, CO.CrossRefGoogle Scholar
  57. Suh, I. S., Lee, C. G. 2003. Photobioreactor engineering: design and performance. Biotechnol Bioproc Eng 8:313–321.CrossRefGoogle Scholar
  58. Torzillo, G., Pushparaj, B., Masojidek, J., Vonshak, A. 2003. Biological constraints in algal biotechnology. Biotechnol Bioproc Eng 8:338–348.CrossRefGoogle Scholar
  59. Tsukahara, K., Sawayama, S. 2005. Liquid fuel production using microalgae. J Jpn Petrol Inst 48:251–259.CrossRefGoogle Scholar
  60. Valenzuela-Espinoza, E., Millan-Nunez, R., Nunez-Cebrero, F. 2002. Protein, carbohydrate, lipid and chlorophyll alpha content in Isochrysis aff. galbana (clone T-Iso) cultured with a low cost alternative to the f/2 medium. Aquacult Eng 25:207–216.CrossRefGoogle Scholar
  61. Vazhappilly, R., Chen, F. 1998. Heterotrophic production potential of omega-3 polyunsaturated fatty acids by microalgae and algae-like microorganisms. Botan Marina 41:553–558.CrossRefGoogle Scholar
  62. Volkman, J. K., Jeffrey, S. W., Nichols, P. D., Rogers, G. I., Garland, C. D. 1989. Fatty acid and lipid composition of 10 species of microalgae used in mariculture. J Exp Marine Biol Ecol 128:219–240.CrossRefGoogle Scholar
  63. Xu, H., Miao, X., Wu, Q. 2006. High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol 126:499–507.CrossRefGoogle Scholar
  64. Yaguchi, T., Tanaka, S., Yokochi, T., Nakahara, T., Higashihara, T. 1997. Production of high yields of docosahexaenoic acid by Schizochytrium sp. strain SR21. J Am Oil Chem Soc 74:1431–1434.CrossRefGoogle Scholar
  65. Zhang, X. 1996. Biodegradability of biodiesel in the aquatic and soil environments. Ph.D. dissertation, Dept. of Biol. and Agr. Engr., University of Idaho, Moscow, ID.Google Scholar
  66. Zhang, X., Peterson, C., Reece, D., Haws, R., Moller, G. 1998. Biodegradability of biodiesel in the aquatic environment. Trans ASAE 41:1423–1430.Google Scholar
  67. Zittelli, G. C., Rodolfi, L., Biondi, N., Tredici, M. R. 2006. Productivity and photosynthetic efficiency of outdoor cultures of Tetraselmis suecica in annular columns. Aquaculture 261:932–943.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2010

Authors and Affiliations

  • Ayhan Demirbas
    • 1
  • M. Fatih Demirbas
    • 2
  1. 1.Sirnak UniversitySirnakTurkey
  2. 2.University Mah.Sila Science and Energy Unlimited CompanyTrabzonTurkey

Personalised recommendations