Algae Energy pp 97-138 | Cite as

Energy from Algae

  • Ayhan Demirbas
  • M. Fatih Demirbas
Part of the Green Energy and Technology book series (GREEN)


The world has been confronted with an energy crisis due to the depletion of finite fossil fuel resources. The use of fossil fuels as energy is now widely accepted as unsustainable due to depleting resources and also due to the accumulation of greenhouse gases in the atmosphere.

Biomass provides a number of local environmental gains. Biomass resources include agricultural and forest residues, algae and grasses, animal manure, organic wastes, and biomaterials. Supply of these resources is dominated by traditional biomass used for cooking and heating, especially in rural areas of developing countries. Biomass mainly now represents only 3% of primary energy consumption in industrialized countries. However, much of the rural population in developing countries, which represents about 50% of the world’s population, is reliant on biomass, mainly in the form of wood, for fuel.


Anaerobic Digestion Steam Gasification Conventional Diesel Hydrothermal Liquefaction Chlorella Protothecoides 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abbadi, A., Domergue, F., Bauer, J., Napier, J. A., Welti, R., Ohringer, U., Cirpus, P., Heinz, E. 2004. Biosynthesis of very-long-chain polyunsaturated fatty acids in transgenicoilseeds: constraints on their accumulation. Plant Cell 16:2734–2746.Google Scholar
  2. Ackman, R. G., Tocher, C. S., McLachlan, J. 1968. Marine phytoplankter fatty acids. J Fish Res Board Can 25:1603–1620.Google Scholar
  3. Adams, M. W. W. 1990. The structure and mechanism of iron-hydrogenases. Biochim Biophys Acta 1020:115–145.Google Scholar
  4. Appel, H. R., Fu, Y. C., Friedman, S., Yavorsky, P. M, Wender, I. 1971. Converting organic wastes to oil. US Burea of Mines Report of Investigation, No. 7560, Washington, D.C.Google Scholar
  5. Aresta, M., Dibenedetto, A., Barberio, G. 2005a. Utilization of macro-algae for enhanced CO2 fixationand biofuels production: Development of a computing software for an LCA study. Fuel Process Technol 86:1679–1693.Google Scholar
  6. Bala, B. K. 2005. Studies on biodiesels from transformation of vegetable oils for diesel engines. Energy Educ Sci Technol 15:1–45.MathSciNetGoogle Scholar
  7. Banerjee, A., Harma, R.S., Chisti, Y., Banerjee, U. C. 2002. Botryococcus braunii: a renewable source of hydrocarbons and other chemicals. Crit Rev Biotechnol 22:245–279.Google Scholar
  8. Barclay, W.R., Meager, K. M., Abril, J. R. 1994. Heterotrophic production of long chain omega-3 fatty acids utilizing algae and algae-like microorganisms. J Appl Phycol 6:123–129.Google Scholar
  9. Behrens, P. W., Kyle, D. J. 1996. Microalgae as a source of fatty acids. J Food Lipids 3:259–272.Google Scholar
  10. Bender, M. 1999. Economic feasibility review for community-scale farmer cooperatives for biodiesel. Biores Technol 70:81–87.Google Scholar
  11. Benemann, J., Oswald, W. J. 1996. Systems and economic analysis of microalgae ponds for conversion of CO2 to biomass. US DOE, Pittsburgh Energy Technology Centre, Pittsburgh, PA.Google Scholar
  12. Benemann, J. R., Pursoff, P., Oswald, W. J. 1978. Engineering Design and Cost Analysis of a Large-Scale Microalgae Biomass System, NTIS#H CP/T1605-01 UC-61). US Department of Energy, Washington, D.C.Google Scholar
  13. Burlew, J. S. 1953. Algal Culture: From Laboratory to Pilot Plant (Publication No. 600). Carnegie Institution of Washington, Washington, D.C.Google Scholar
  14. Caliceti, M., Argese, E., Sfriso, A., Pavoni, B. 2002. Heavy metal contamination in the seaweeds of the Venice lagoon. Chemosphere 47:443–454.Google Scholar
  15. Cardone, M., Prati, M. V., Rocco, V., Senatore, A. 1998. Experimental analysis of performances and emissions of a diesel engines fuelled with biodiesel and diesel oil blends. Proceedings of MIS–MAC V, Rome, Italy, pp. 211–25 (in Italian).Google Scholar
  16. Carraretto, C., Macor, A., Mirandola, A., Stoppato, A., Tonon, S. 2004. Biodiesel as alternative fuel: experimental analysis and energetic evaluations. Energy 29:2195–2211.Google Scholar
  17. Chisti, Y. 2007. Biodiesel from microalgae. Biotechnol Adv 25:294–306.Google Scholar
  18. Chynoweth, D. P., Turick, C. E., Owens, J. M., Jerger, D. E., Peck, M. W. 1993. Biochemical methane potential of biomass and waste feedstocks. Biomass Bioenergy 5:95–111.Google Scholar
  19. Cohen, Z., Norman, H. A., Heimer, Y. M. 1995. Microalgae as a source of omega 3 fatty acids. World Rev Nutrit Dietet 77:1–31.Google Scholar
  20. Colquhoun, D. M. 2001. Nutraceuticals: vitamins and other nutrients in coronary heart disease. Current Opin Lipidol 12:639–646.Google Scholar
  21. Collyer, D. M., Fogg, G. E. 1955. Studies of fat accumulation by algae. J Exp Bot 6:256–275.Google Scholar
  22. Constantopolous, G., Bloch, K. 1967. Effect of light intensity on the lipid composition of Euglena gracilis. J Biol Chem 242:3538–3542.Google Scholar
  23. Coombs, J., Darley, W.M., Holm-Hansen, O., Volcani, B. E. 1967. Studies on the biochemistry and fine structure of silica shell formation in diatoms. Chemical composition of Navicula pelliculosa during silicon starvation. Plant Physiol 42:1601–1606.Google Scholar
  24. Coronado, C. R., de Carvalho Jr., J. A., Silveira, J. L. 2009. Biodiesel CO2 emissions: a comparison with the main fuels in the Brazilian market. Fuel Proc Technol 90:204–211.Google Scholar
  25. Corro, G., Ayala, E. 2008. Bioethanol and diesel/bioethanol blends emissions abatement. Fuel 87:3537–3542.Google Scholar
  26. Dene, T., Hole, J. 2006. Enabling biofuels: biofuel economics. Final Report. Minister of Transport, Covec Ltd., Auckland, New Zealand, June 2006.Google Scholar
  27. Demirbas, A. 2000. Mechanisms of liquefaction and pyrolysis reactions of biomass. Energy Convers Manage 41:633–646.Google Scholar
  28. Demirbas, A. 2002. Biodiesel from vegetable oils via transesterification in supercritical methanol. Energy Convers Manage 43:2349–2356.Google Scholar
  29. Demirbas, A. 2003. Biodiesel fuels from vegetable oils via catalytic and non-catalytic supercritical alcohol transesterifications and other methods: a survey. Energy Convers Manage 44:2093–2109.Google Scholar
  30. Demirbas, A. 2006. Oily products from mosses and algae via pyrolysis. Energy Sources A 28:933–940.Google Scholar
  31. Demirbas, A. 2007. Production of biofuels from macroalgae and microalgae. Energy Educ Sci Technol A 18:59–65.Google Scholar
  32. Demirbas, A. 2008. Economic and environmental impacts of the liquid biofuels. Energy Educ Sci Technol A 22:37–58.Google Scholar
  33. Demirbas, A. H. 2009a. Inexpensive oil and fats feedstocks for production of biodiesel. Energy Educ Sci Technol A 23:1–13.Google Scholar
  34. Demirbas, A. 2009b. Political, economic and environmental impacts of biofuels: a review. Appl Energy 86:2627–2636.Google Scholar
  35. Demirbas, A., Arin, G. 2004. Hydrogen from biomass via pyrolysis: relationships between yield of hydrogen and temperature. Energy Sources 26:1061–1069.Google Scholar
  36. De Urquiza, A. M., Liu, S., Sjoberg, M., Zetterstrom, R. H., Griffiths, W., Sjovall, J., Perlmann, T. 2000. Docosahexaenoic acid, a ligand for the retinoid X receptor in mouse brain. Science 290:2140–2144.Google Scholar
  37. Dorado, M. P., Ballesteros, E. A., Arnal, J. M., Gomez, J., Lopez, F. J. 2003. Exhaust emissions from a Diesel engine fueled with transesterified waste olive oil. Fuel 82:1311–1315.Google Scholar
  38. Dote, Y., Sawayama, S., Inoue, S., Minowa, T., Yokoyama, S. 1994. Recovery of liquid fuel from hydrocarbon-rich microalgae by thermochemical liquefaction. Fuel 73:1855–1857.Google Scholar
  39. Dufey, A. 2006. Biofuels production, trade and sustainable development: emerging issues. Environmental Economics Programme, Sustainable Markets Discussion Paper No. 2, International Institute for Environment and Development (IIED), London, September 2006.Google Scholar
  40. Dunn, R. O. 2001. Alternative jet fuels from vegetable-oils. Trans ASAE 44:1151–1757.Google Scholar
  41. Dote, Y., Sawayama, S., Yokoyama, S. 1995. Liqefaction of hydrocarbon-rich microalga National Institute for Resources and Environment 16-3, Onogawa, Tsukuba, Ibaraki 305, Japan.Google Scholar
  42. EPA. 2002. A comprehensive analysis of biodiesel impacts on exhaust emissions. Draft Technical Report, EPA420-P-02-001, US Environmental Protection Agency, October 2002.Google Scholar
  43. Filipkowska, A., Lubecki, L., Szymczak-˙Zyła, M., Kowalewska, G., ˙Zbikowski, R., Szefer, P. 2008. Utilisation of macroalgae from the Sopot beach (Baltic Sea). Oceanologia 50:255–273.Google Scholar
  44. Funk, C. D. 2001. Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294:1871–1875.Google Scholar
  45. Gaffron, H. 1940. Carbon dioxide reduction with molecular hydrogen in green algae. Am J Bot 27:273–283.Google Scholar
  46. Gercel, H. F. 2002. The effect of a sweeping gas flow rate on the fast pyrolysis of biomass. Energy Sources 24:633–642.Google Scholar
  47. Graham, L. A., Belisle, S. L., Baas, C. L. 2008. Emissions from light duty gasoline vehicles operating on low blend ethanol gasoline and E85. Atmos Environ 42:4498–4516.Google Scholar
  48. Granda, C. B., Zhu, L., Holtzapple, M. T. 2007. Sustainable liquid biofuels and their environmental impact. Environ Prog 26:233–250.Google Scholar
  49. Grassi, G. 1999. Modern bioenergy in the European Union. Renew Energy 16:985–990.Google Scholar
  50. Guil-Guerrero, J. L., Belarbi, E. H., Rebolloso-Fuentes, M. M. 2000. Eicosapentaenoic and arachidonic acids purification from the red microalga Porphyridium cruentum. Bioseparation 9:299–306.Google Scholar
  51. Gunaseelan, V. N. 1997. Anaerobic digestion of biomass for methane production: a review. Biomass Bioenergy 13:83–114.Google Scholar
  52. Haas, M. J., McAloon, A. J., Yee, W.J., Foglia, T. A. 2006. A process model to estimate biodiesel production costs. Bioresour Technol 97:671–678.Google Scholar
  53. Hussy, I., Hawkes, F. R., Dinsdale, R., Hawkes, D. L. 2005. Continuous fermentative hydrogen production from sucrose and sugarbeet. Int J Hydrogen Energy 30:471–483.Google Scholar
  54. IEA. 2007. Biodiesel statistics. IEA Energy Technology Essentials, OECD/IEA. International Energy Agency, Paris, January 2007.Google Scholar
  55. Iwasa, N., Kudo, S., Takahashi, H., Masuda, S., Takezawa, N. 1993. Highly selective supported Pd catalysts for steam reforming of methanol. Catal Lett 19:211–216.Google Scholar
  56. Janulis, P. 2004. Reduction of energy consumption in biodiesel fuel life cycle. Renew Energy 29:861–871.Google Scholar
  57. Jenkins, B. M., Baxter, L. L., Miles Jr., T. R., Miles, T. R. 1998. Combustion properties of biomass. Fuel Proc Technol 54:17–46.Google Scholar
  58. Kim, H., Choi, B. 2008. Effect of ethanol-diesel blend fuels on emission and particle size distribution in a common-rail direct injection engine with warm-up catalytic converter. Renew Energy 33:2222–2228.Google Scholar
  59. Kishimoto, M., Okakura, T., Nagashima, H., Minowa, T., Yokoyama, S., Yamaberi, K., 1994. CO2 fixation and oil production using microalgae. J Ferment Bioeng 78:479–482.Google Scholar
  60. Krahl, J., Knothe, G., Munack, A., Ruschel, Y., Schröder, O., Hallier, E., Westphal, G., Bünger, J. 2009. Comparison of exhaust emissions and their mutagenicity from the combustion of biodiesel, vegetable oil, gas-to-liquid and petrodiesel fuels. Fuel 88:1064–1069.Google Scholar
  61. Laforgia, D., Ardito, V. 1994. Biodiesel fuelled IDI engines: performances, emissions and heat release investigation. Biores Technol 51:53–59.Google Scholar
  62. Lapuerta, M., Armas, O., Herreros, J. M. 2008. Emissions from a diesel-bioethanol blend in an automotive diesel engine. Fuel 87:25–31.Google Scholar
  63. Li, Y., Horsman, M., Wu, N., Lan, C. Q., Dubois-Calero, N. 2008. Biofuels from microalgae. Biotechnol Prog 24:815–820.Google Scholar
  64. Meier, R. L. 1955. Biological cycles in the transformation of solar energy into useful fuels. In: Daniels, F., Duffie, J.A. (eds.). Solar Energy Research. University of Wisconsin Press, Madison, WI, pp. 179–183.Google Scholar
  65. Miao, X., Wu, Q. 2004. High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides. J Biotechnol 110:85–93.Google Scholar
  66. Minowa, T., Yokoyama, S.-Y., Kishimoto, M., Okakura, T. 1995. Oil production from algal cells of dunaliella tertiolecta by direct thermochemical liquefaction. Fuel 74:1735–1738.Google Scholar
  67. Miyake, J., Veziroglu, T. N., Takashashi, P. K. 1990. Hydrogen energy progress VIII. Proceedings of the 8th WHEC, Hawaii, Pergamon, New York.Google Scholar
  68. Molina Grima, E. M., Belarbi, E. H., Fernandez, F. G. A., Medina, A. R., Chisti, Y. 2003. Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515.Google Scholar
  69. Najafi, G., Ghobadian, B., Tavakoli, T., Buttsworth, D. R., Yusaf, T. F., Faizollahnejad, M. 2009. Performance and exhaust emissions of a gasoline engine with ethanol blended gasoline fuels using artificial neural network. Appl Energy 86:630–639.Google Scholar
  70. Nath, K., Das, D. 2003. Hydrogen from biomass. Curr Sci 85:265–271.Google Scholar
  71. Nichols, B. W. 1965. Light induced changes in the lipids of Chlorella vulgaris. Biochim Biophys Acta 106:274–279.Google Scholar
  72. Nithedpattrapong, S., Srikul, S., Korawis, C., Onthong, J. 1995. Influence of N, P, K and Mg on yield of oil palm grown on Kohong soil series. Thai Agricult Res J 13:164–174.Google Scholar
  73. Ogi, T., Yokoyama, S., Minowa,T., Dote, Y. 1990. Role of butanol solvent in direct liquefaction of wood. Sekiyu Gakkaishi (J Jpn Petrol Inst) 33:383–389.Google Scholar
  74. Oswald, W.J., Golueke, C. 1960. Biological transformation of solar energy. Adv Appl Microbiol 2:223–262.Google Scholar
  75. Peng, W.M., Wu, Q. Y., Tu, P. G. 2000. Effects of temperature and holding time on production of renewable fuels from pyrolysis of Chlorella protothecoides. J Appl Phycol 12:147–152.Google Scholar
  76. Peng, W. M., Wu, Q. Y., Tu, P. G. 2001. Pyrolytic characteristics of heterotrophic Chlorella protothecoides for renewable bio-fuel production. J Appl Phycol 13:5–12.Google Scholar
  77. Pohl, P., Wagner, H. 1972. Control of fatty acid and lipid biosynthesis in Euglena gracilis by ammonia, light and DCMU. Z Naturforsch 27:53–61.Google Scholar
  78. Pulz, O., Gross, W. 2004. Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635–648.Google Scholar
  79. Putun, A. E. 2002. Biomass to bio-oil via fast pyrolysis of cotton straw and stalk. Energy Sour 24:275–285.Google Scholar
  80. Qi, B., Fraser, T., Mugford, S., Dobson, G., Sayanova, O., Butler, J., Napier, J. A., Stobart, A. K., Lazarus, C. M. 2004. Production of very long chain polyunsaturated omega-3 and omega-6 fatty acids in plants. Nat Biotechnol 22:739–745.Google Scholar
  81. Radmer, R. J. 1996. Algal diversity and commercial algal products. Bioscience 46:263–270.Google Scholar
  82. Rakopoulos, D. C., Rakopoulos, C. D., Kakaras, E. C., Giakoumis, E. G. 2008. Effects of ethanoldiesel blends on the performance and exhaust emissions of heavy duty DI diesel engine. Energy Convers Manage 49:3155–3162.Google Scholar
  83. RFA. 2007. Ethanol Industry Statistics. Renewable Fuels Association, Washington, D.C.Google Scholar
  84. RFA. 2009. Ethanol Industry Statistics. Renewable Fuels Association, Washington, D.C.Google Scholar
  85. Robert, S. S., Singh, S. P., Zhou, X. R., Petrie, J. R., Blackburn, S. I., Mansour, M. P., Nichols, P. D., Liu, Q., Green, A. G. 2005. Metabolic engineering of Arabidopsis to produce nutritionally important DHA in seed oil. Funct Plant Biol 32:473–479.Google Scholar
  86. Rosenberg, A., Gouaux, J. 1967. Quantitative and compositional changes in monogalactosyl and digalactosyl diglycerides during light-induced formation of chloroplasts in Euglena gracilis. J Lipid Res 8:80–83.Google Scholar
  87. Sawayama, S., Inoue, S., Dote, Y., Yokoyama, S.-Y. 1995. CO2 fixation and oil production through microalga. Energy Convers Manage 36:729–731.Google Scholar
  88. Sawayama, S., Minowa, T., Yokoyama, S. Y. 1999. Possibility of renewable energy production and CO2 mitigation by thermochemical liquefaction of microalgae. Biomass Bioenergy 17:33–39.Google Scholar
  89. Shay, E. G. 1993. Diesel fuel from vegetable oils: status and opportunities. Biomass Bioenergy 4:227–242.Google Scholar
  90. Sheehan, J., Dunahay, T., Benemann, J., Roessler, P. 1998. A Look Back at the U.S. Department of Energy’s Aquatic Species Program – Biodiesel from Algae. National Renewable Energy Laboratory (NREL) Report: NREL/TP-580-24190. Golden, CO.Google Scholar
  91. Soeder, C.J. 1986. A historical outline of applied algology. In: Richmond, A. (ed.). Handbook of Microalgal Mass Culture. CRC, Boca Raton, FL, pp. 25–41.Google Scholar
  92. Soltic, P., Edenhauser, D., Thurnheer, T., Schreiber, D., Sankowski, A. 2009. Experimental investigation of mineral diesel fuel, GTL fuel, RME and neat soybean and rapeseed oil combustion in a heavy duty on-road engine with exhaust gas after treatment. Fuel 88:1–8.Google Scholar
  93. Spoehr, H. A., Milner, H. W. 1949. The chemical composition of Chlorella: effect of environmental conditions. Plant Physiol 24:120–149.Google Scholar
  94. Sukenik, A. 1991. Ecophysiological considerations in the optimization of eicosapentaenoic acid production by Nannochloropsis sp. (Eustigmatophyceae). Biores Technol 35:263–269.Google Scholar
  95. Takezawa, N., Shimokawabe, M., Hiramatsu, H., Sugiura, H., Asakawa, T., Kobayashi, H. 1987. Steam reforming of methanol over Cu/ZrO2. Role of ZrO2 support. React Kinet Catal Lett 33:191–196.Google Scholar
  96. Tan, C. K., Johns, M. R. 1996. Screening of diatoms for heterotrophic eicosapentaenoic acid production. J Appl Phycol 8:59–64.Google Scholar
  97. Thamsiriroj, T. 2007. Optimal biomass and technology for production of biofuel as a transport fuel. Master’s thesis, University College, Cork, UK.Google Scholar
  98. Thamsiriroj, T., Murphy, J. D. 2009. Is it better to import palm oil from Thailand to produce biodiesel in Ireland than to produce biodiesel from indigenous Irish rape seed? Appl Energy 86:595–604.Google Scholar
  99. Tilman, D., Hill, J., Lehman, C. 2006. Carbon-negative biofuels from low-input high diversity grassland biomass. Science 314:1598–1600.Google Scholar
  100. Tsukahara, K., Sawayama, S. 2005. Liquid fuel production using microalgae. J Jpn Petr Inst 48:251–259.Google Scholar
  101. Tzirakis, E., Karavalakis, G., Zannikos, F., Stournas, S. 2007. Impact of Diesel/biodiesel blends on emissions from a diesel vehicle operated in real driving conditions. SAE Technical Paper, National Technical University of Athens, Athens, Greece.Google Scholar
  102. UN. 2006. The emerging biofuels market: regulatory, trade and development implications. United Nations Conference on Trade and Development, New York and Geneva.Google Scholar
  103. Urbanchuk, J. M. 2007. Economic impacts on the farm community of cooperative ownership of ethanol production, LECG, LLC, Wayne, PA, 13 February 2007.Google Scholar
  104. Van Ginkel, S., Sung, S., Lay, J. J. 2001. Biohydrogen production as a function of pH and substrate concentration. Environ Sci Technol 35:4726–4730.Google Scholar
  105. Ward, O. P., Singh, A. 2005. Omega-3/6 fatty acids: alternative sources of production. Proc Biochem 40:3627–3652.Google Scholar
  106. Wen, Z. Y., Chen, F. 2003. Heterotrophic production of eicosapentaenoic acid by microalgae. Biotechnol Adv 21:273–294.Google Scholar
  107. Werner, D. 1966. Die Kieselsaure im Stoffwechsel von Cyclotella cryptica Reimann, Lewin and Guilard. Arch Mikrobiol 55:278–308.Google Scholar
  108. Whims, J. 2002. Corn based ethanol costs and margins. Attachment 1, AGMRC, Kansas State Uuniversity.Google Scholar
  109. Wu, G. H., Truksa, M., Datla, N., Vrinten, P., Bauer, J., Zank, T., Cirpus, P., Heinz, E., Qiu, X. 2005. Stepwise engineering to produce high yields of very long-chain polyunsaturated fatty acids in plants. Nat Biotechnol 23:1013–1017.Google Scholar
  110. Xu, H., Miao, X., Wu, Q. 2006. High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol 126:499–507.Google Scholar
  111. Yu, S., Tao, J. 2009. Simulation based life cycle assessment of airborne emissions of biomass-based ethanol products from different feedstocks planting areas in China. J Cleaner Prod 17:501–506.Google Scholar
  112. Zhang, C. W., Cohen, Z., Khozin-Goldberg, I., Richmond, A. 2002. Characterization of growth and arachidonic acid production of Parietochloris incisa comb. nov (Trebouxiophyceae, Chlorophyta). J Appl Phycol 14:453–460.Google Scholar
  113. Zhang, Y., Dub, M. A., McLean, D. D., Kates, M. 2003. Biodiesel production from waste cooking oil: 2. Economic assessment and sensitivity analysis. Biores Technol 90:229–240.Google Scholar

Copyright information

© Springer-Verlag London Limited 2010

Authors and Affiliations

  • Ayhan Demirbas
    • 1
  • M. Fatih Demirbas
    • 2
  1. 1.Sirnak UniversitySirnakTurkey
  2. 2.University Mah.Sila Science and Energy Unlimited CompanyTrabzonTurkey

Personalised recommendations