Advertisement

Algae Technology

  • Ayhan Demirbas
  • M. Fatih Demirbas
Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

Billions of years ago the Earth’s atmosphere was filled with CO2. Thus there was no life on the planet. Life on Earth started with Cyanobacterium and algae. These humble photosynthetic organisms sucked out the atmospheric CO2 and started releasing oxygen. As a result, the levels of CO2 started decreasing to such an extent that life evolved on Earth. Once again these smallest organisms are poised to save us from the threat of global warming.

Keywords

Algal Biomass Solar Collector Tubular Reactor Microalgal Biomass Open Pond 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Becker, E. W. 1994. Photobioreactors: production systems for photo-trophic microorganisms. In: Baddiley, J., Carey, N. H., Higgins, I. J., Potter, W. G. (eds.). Microalga: Biotechnology and Microbiology. Cambridge University Press, Cambridge, UK.Google Scholar
  2. Benemann, J. R., Augenstein, D. C., Weissman, J. C. 1982. Microalgae as a source of liquid fuels, appendix: technical feasibility analysis. Final Report to the US Department of Energy.Google Scholar
  3. Benemann, J. R. 2008. Open ponds and closed photobioreactors – comparative economics. 5th Annual World Congress on Industrial Biotechnology and Bioprocessing. Chicago, 30 April 2008.Google Scholar
  4. Biopact. 2008. An in-depth look at biofuels from algae. Available at http://news.mongabay.com/bioenergy/2007/01/in-depth-look-at-biofuels-from-algae.html. Last accessed 18 December 2009.
  5. Borowitzka, M. A. 1999. Commercial production of microalgae: ponds, tanks, tubes and fermenters. J Biotechnol 70:313–321.CrossRefGoogle Scholar
  6. Bosma, R., van Spronsen, W. A., Tramper, J., Wijffels, R. H. 2003. Ultrasound, a new separation technique to harvest microalgae. J Appl Phycol 15:143–153.CrossRefGoogle Scholar
  7. Brown, L. M., Zeiler, B. G. 1993. Aquatic biomass and carbon dioxide trapping. Energy Convers Manage 34:1005–1013.CrossRefGoogle Scholar
  8. Campbell, M. N. 2008. Biodiesel: algae as a renewable source for liquid fuel. Guelph Eng J 1:2–7.Google Scholar
  9. Carlsson, A. S., van Beilen, J. B., Möller, R., Clayton, D. 2007. Micro- and macro-algae: utility for industrial applications. In: Bowles, D. (ed.). Outputs from the EPOBIO: Realising the Economic Potential of Sustainable Resources – Bioproducts from Non-food Crops Project, CNAP, University of York, UK.Google Scholar
  10. Carvalho, A. P., Meireles, L. A., Malcata, F. X. 2006. Microalgal reactors: a review of enclosed system designs and performances. Biotechnol Prog 22:1490–1506.Google Scholar
  11. Chaumont, D. 1993. Biotechnology of algal biomass production: a review of systems for outdoor mass culture. J Appl Phycol 5:593–604.CrossRefGoogle Scholar
  12. Chisti, Y. 2006. Microalgae as sustainable cell factories. Environ Eng Manage J 5:261–274.Google Scholar
  13. Chisti, Y. 2007. Biodiesel from microalgae. Biotechnol Adv 25:294–306.CrossRefGoogle Scholar
  14. Choi, S. L., Suh, I. S., Lee, C. G. 2003. Lumostatic operation of bubble column photobioreactors for Haematococcus pluvialis cultures using a specific light uptake rate as a control parameter. Enzyme Microbial Technol 33:403–409.CrossRefGoogle Scholar
  15. Cohen, E., Koren, A., Arad, S. M. 1991. A closed system for outdoor cultivation of microalgae. Biomass Bioenergy 1:83–88.CrossRefGoogle Scholar
  16. Csordas, A., Wang, J. K. 2004. An integrated photobioreactor and foam fractionation unit for the growth and harvest of Chaetoceros spp. in open systems. Aquacult Eng 30:15–30.CrossRefGoogle Scholar
  17. Demirbas, A. 2006. Oily products from mosses and algae via pyrolysis. Energy Sources A 28:933–940.CrossRefGoogle Scholar
  18. Demirbas, A. H. 2009a. Inexpensive oil and fats feedstocks for production of biodiesel. Energy Educ Sci Technol A 23:1–13.Google Scholar
  19. Demirbas, A. 2009b. Production of biodiesel from algae oils. Energy Sources A 31:163–168.CrossRefGoogle Scholar
  20. Demirbas, A. H. 2009c. Inexpensive oil and fats feedstocks for production of biodiesel. Energy Educ Sci Technol A 23:1–13.Google Scholar
  21. Dimitrov, K. 2008. Green fuel technologies: a case study for industrial photosynthetic energy capture. Brisbane, Australia. Available at http://www.nanostring.net/Algae/.Google Scholar
  22. Dunahay, T. G., Jarvis, E. E., Dais, S. S., Roessler, P. G. 1996. Manipulation of microalgal lipid production using genetic engineering. Appl Biochem Biotechnol 57–58:223–231.CrossRefGoogle Scholar
  23. Goldman, J. C., Ryther, J. H. 1977. Mass production of algae: bio-engineering aspects. In: Mitsui, A. et al. (eds.). Biological Solar Energy Conversion, Academic, New York.Google Scholar
  24. Grobbelaar, J. U. 2004. Algal nutrition. In: Richmond, A. (ed.). Handbook of Microalgal Culture: Biotechnology and Applied Phycology. Blackwell, London.Google Scholar
  25. Haesman, M., Diemar, J., O’Connor, W., Soushames, T., Foulkes, L. 2000. Development of extended shelf-life microalgae concentrate diets harvested by centrifugation for bivalve molluscs – a summary. Aquacult Res 31:637–659CrossRefGoogle Scholar
  26. Hankamer, B., Lehr, F., Rupprecht, J., Mussgnug, J. H., Posten, C., Kruse, O. 2007. Photosynthetic biomass and H production by green algae: from bioengineering to bioreactor scale up. Phys Plant 131:10–21.CrossRefGoogle Scholar
  27. Janssen, M., Tramper, J., Mur, L. R., Wijffels, R. H. 2003. Enclosed outdoor photobioreactors: light regime, photosynthetic efficiency, scale-up and future prospects. Biotechnol Bioeng 81:193–210.CrossRefGoogle Scholar
  28. Knuckey, R. M., Brown, M. R., Robert, R., Frampton, D. M. F. 2006. Production of microalgal concentrates by flocculation and their assessment as aquaculture feeds. Aquacult Eng 35:300–313.CrossRefGoogle Scholar
  29. Lee, Y. 2001. Microalgal mass culture systems and methods: their limitation and potential. J Appl Phycol 13:307–315.CrossRefGoogle Scholar
  30. McHugh, D. J. 2003. A guide to the seaweed industry. FAO Fisheries Technical Paper No. 441. FAO, Rome.Google Scholar
  31. Molina Grima, E. 1999. Microalgae, mass culture methods. In: Flickinger, M. C., Drew, S. W. (eds.). Encyclopedia of Bioprocess Technology: Fermentation, Biocatalysis and Bioseparation, vol. 3. Wiley, New York.Google Scholar
  32. Molina Grima, E., Acién Fernández, F. G., García Camacho, F., Chisti, Y. 1999. Photobioreactors: light regime, mass transfer, and scaleup. J Biotechnol 70:231–247.CrossRefGoogle Scholar
  33. Molina Grima, E. M., Belarbi, E. H., Fernandez, F. G. A., Medina, A. R., Chisti, Y. 2003. Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515.CrossRefGoogle Scholar
  34. Ogbonna, J. C., Tanaka, H. 1997. Industrial-size photobioreactors. Chemtech 27:43–49.Google Scholar
  35. Oswald, W. J., Golueke, C. G. 1960. Biological transformation of solar energy. Adv Appl Microbiol 11:223–242.CrossRefGoogle Scholar
  36. Ozkurt, I. 2009. Qualifying of safflower and algae for energy. Energy Educ Sci Technol A 23:145–151.Google Scholar
  37. Patil, V., Reitan, K. I., Knudsen, G., Mortensen, L., Kallqvist, T., Olsen, E., Vogt, G., Gislerød, H. R. 2005. Microalgae as source of polyunsaturated fatty acids for aquaculture. Curr Topics Plant Biol 6:57–65.Google Scholar
  38. Patil, V., Tran, K.-Q., Giselrød, H. R. 2008. Towards sustainable production of biofuels from microalgae. Int J Mol Sci 9:1188–1195.CrossRefGoogle Scholar
  39. Pimentel, D., Berger, B., Filiberto, D., Newton, M., Wolfe, B., Karabinakis, B., Clark, S., Poon, E., Abbett, E., Nandagopal, S. 2004. Water resources: agricultural and enveronmental issues. Biosci 54: 909–918.CrossRefGoogle Scholar
  40. Pimentel, D. (ed.). 2008. Biofuels, solar and wind as renewable energy systems: benefits and risks. Springer, New York.Google Scholar
  41. Pirt, S. J. 1986. The thermodynamic efficiency (quantum demand) and dynamics of photosynthetic growth. Appl Phycol 13:307–315.Google Scholar
  42. Poelman, E., DePauw, N., Jeurissen, B. 1997. Potential of electrolytic flocculation for recovery of micro-algae. Resour Conserv Recyc 19:1–10.CrossRefGoogle Scholar
  43. Pulz, O. 2001. Photobioreactors: production systems for phototrophic microorganisms. Appl Microbiol Biotechnol 57:287–293.CrossRefGoogle Scholar
  44. Pulz, O. 2007. Evaluation of greenfuel’s 3D matrix algal growth engineering scale unit: APS Redhawk Unit, Phoenix, AZ, IGV Institut für Getreideverarbeitung GmbH, June–July 2007.Google Scholar
  45. Richmond, A. 2004. Principles for attaining maximal microalgal productivity in photobioreactors: an overview. Hydrobiologia 512:33–37.CrossRefGoogle Scholar
  46. Riesing, T. 2006. Cultivating algae for liquid fuel production. http://oakhavenpc.org/cultivating_algae.htm. Accessed February 2008.
  47. Rossignol, N., Lebeau, T., Jaouen, P., Robert, J. M. 2000. Comparison of two membrane-photobioreactors, with free or immobilized cells, for the production of pigments by a marine diatom. Bioproc Eng 23:495–501.CrossRefGoogle Scholar
  48. Roessler, P. G., Brown, L. M., Dunahay, T. G., Heacox, D. A., Jarvis, E. E., Schneider, J. C., Talbot, S. G., Zeiler, K. G. 1994. Genetic-engineering approaches for enhanced production of biodiesel fuel from microalgae. ACS Symp Ser 566:255–270.CrossRefGoogle Scholar
  49. Sananurak, C., Lirdwitayaprasit, T., Menasveta, P. 2009. Development of a closed-recirculating, continuous culture system for microalga (Tetraselmis suecica) and rotifer (Brachionus plicatilis) production. Sci Asia 35:118–124.CrossRefGoogle Scholar
  50. Sánchez Mirón, A., Contreras Gómez, A., García Camacho, F., Molina Grima, E., Chisti, Y. 1999. Comparative evaluation of compact photobioreactors for large-scale monoculture of microalgae. J Biotechnol 70:249–270.CrossRefGoogle Scholar
  51. Sato, T., Usui, S., Tsuchiya, Y., Yutaka, K. 2006. Invention of outdoor closet type photobioreactor for microalgae. Energy Convers Manage 47:791–799.CrossRefGoogle Scholar
  52. Schneider, D. 2006. Grow your own? Would the widespread adoption of biomass-derived transportation fuels really help the environment? Am Sci 94:408–409.Google Scholar
  53. Schenk, P. M., Thomas-Hall, S. R., Stephens, E., Marx, U., Mussgnug, J. H., Posten, C., Kruse, O., Hankamer, B. 2008. Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res 1:20–43.CrossRefGoogle Scholar
  54. Scott, A., Bryner, M. 2006. Alternative fuels: rolling out next-generation technologies. Chem Week December 20–27:17–21.Google Scholar
  55. Sheehan, J., Dunahay, T., Benemann, J., Roessler, P. 1998. A look back at the U.S. Department of Energy’s Aquatic Species Program – Biodiesel from Algae. National Renewable Energy Laboratory (NREL) Report: NREL/TP-580-24190. Golden, CO.CrossRefGoogle Scholar
  56. Spolaore, P., Joannis-Cassan, C., Duran, E., Isambert, A. 2006. Commercial applications of microalgae. J Biosci Bioeng 101:87–96.CrossRefGoogle Scholar
  57. Terry, K. L., Raymond, L. P. 1985. System design for the autotrophic production of microalgae. Enzyme Microb Technol 7:474–487.CrossRefGoogle Scholar
  58. Tredici, M. 1999. Bioreactors, photo. In: Flickinger, M. C., Drew, S. W. (eds.). Encyclopedia of Bioprocess Technology, Fermentation, Biocatalysis and Bioseparation. Wiley, New York.Google Scholar
  59. Ugwu, C. U., Aoyagi, H., Uchiyama, H. 2008. Photobioreactors for mass cultivation of algae. Biores Technol 99:4021–4028.CrossRefGoogle Scholar
  60. Viswanathan, B. 2006. An introduction to energy sources. Indian Institute of Technology, Madras, India.Google Scholar
  61. Wang, B., Li, Y., Wu, N., Lan, C. Q. 2008. CO2 bio-mitigation using microalgae. Appl Microbiol Biotechnol 79:707–718.CrossRefGoogle Scholar
  62. Weissman, J. C., Goebel, R. P. 1987. Design and analysis of pond systems for the purpose of producing fuels. Report, Solar Energy Research Institute, SERI/STR-231-2840, Golden, CO.Google Scholar
  63. Weissman, J., Goebel, R. P., Benemann, J. R. 1988. Photobioreactor design: mixing, carbon utilization, and oxygen accumulation. Biotechnol Bioeng 31:336–344.CrossRefGoogle Scholar
  64. Wijffels, R. H. 2008. Potential of sponges and microalgae for marine biotechnology. Trends Biotechnol 26:26–31.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2010

Authors and Affiliations

  • Ayhan Demirbas
    • 1
  • M. Fatih Demirbas
    • 2
  1. 1.Sirnak UniversitySirnakTurkey
  2. 2.University Mah.Sila Science and Energy Unlimited CompanyTrabzonTurkey

Personalised recommendations