Advertisement

Biofuels

  • Ayhan Demirbas
  • M. Fatih Demirbas
Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

Today’s energy system is unsustainable because of equity issues as well as environmental, economic, and geopolitical concerns that have implications far into the future. Bioenergy is one of the most important components to mitigate greenhouse gas emissions and substitute for fossil fuels (Goldemberg 2000; Dincer 2008). Renewable energy is one of the most efficient ways to achieve sustainable development.

Plants use photosynthesis to convert solar energy into chemical energy. It is stored in the form of oils, carbohydrates, proteins, etc. This plant energy can be converted to biofuels. Hence biofuels are primarily a form of solar energy. For biofuels to succeed at replacing large quantities of petroleum fuel, the feedstock availability needs to be as high as possible.

Keywords

Anaerobic Digestion Crude Glycerol Methyl Tertiary Butyl Ether High Heating Value Methyl Tertiary Butyl Ether 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. An, J., Bagnell, L., Cablewski, T., Strauss, C. R., Trainor, R. W. 1997. Applications of high-temperature aqueous media for synthetic organic reactions. J Org Chem 62:2505–2511.CrossRefGoogle Scholar
  2. Balat, M. 2008. Progress in biogas production processes. Energy Edu Sci Technol 22:15–35.Google Scholar
  3. Balat, M. 2009. New biofuel production technologies. Energy Educ Sci Technol Part A 22:147–161.Google Scholar
  4. Bender, M. 1999. Economic feasibility review for community-scale farmer cooperatives for biodiesel. Bioresour Technol 70:81–87.CrossRefGoogle Scholar
  5. Berry, G. D., Pasternak, A. D., Rambach, G. D., Smith, J. R., Schock, R. N. 1996. Hydrogen as a future transportation fuel. Energy 21:289–303.CrossRefGoogle Scholar
  6. Boerrigter, H., den Uil, H. 2002. Green diesel from biomass via FTS: new insights in gas cleaning and process design. Pyrolysis and Gasification of Biomass and Waste, Expert Meeting, Strasbourg, France (30 Sep.–1 Oct.).Google Scholar
  7. Bournay, L., Casanave, D., Delfort, B., Hillion, G., Chodorge, J. A. 2005. New heterogeneous process for biodiesel production: a way to improve the quality and the value of the crude glycerin produced by biodiesel plants. Catal Today 106:190–192.CrossRefGoogle Scholar
  8. Cherry, R. S. 2004. A hydrogen utopia? Int J Hydrogen Energy 29:125–129.CrossRefGoogle Scholar
  9. Dasari, M. A., Kiatsimkul, P. P., Sutterlin, W. R., Suppes, G. J. 2005. Low-pressure hydrogenolysis of glycerol to propylene glycol. Appl Catal A 281:225–231.CrossRefGoogle Scholar
  10. Davis, B. H. 2002. Overview of reactors for liquid phase Fischer–Tropsch synthesis. Catal Today 71:249–300.CrossRefGoogle Scholar
  11. Demirbas, A. 2006. Biogas potential of manure and straw mixtures. Energy Sour A 28:71–78.CrossRefGoogle Scholar
  12. Demirbas, A. 2007. Progress and recent trends in biofuels. Prog Energy Combus Sci 33:1–18.CrossRefGoogle Scholar
  13. Demirbas, A. 2008. Recent progress in biorenewable feedstocks. Energy Educ Sci Technol 22:69–95.Google Scholar
  14. Dincer, K. 2008. Lower emissions from biodiesel combustion. Energy Sour A 30:963–968.CrossRefGoogle Scholar
  15. Dry, M. E. 2002. The Fischer–Tropsch process: 1950–2000. Catal Today 71:227–241.CrossRefGoogle Scholar
  16. Dry, M. E. 2004. Present and future applications of the Fischer–Tropsch process. Appl Catal A 276:1–3.CrossRefGoogle Scholar
  17. EBB. 2009. EU: Biodiesel industry expanding use of oilseeds. European Biodiesel Board, Brussels.Google Scholar
  18. Goldemberg, J. 2000. World Energy Assessment, United Nations Development Programme, New York.Google Scholar
  19. Haas, M. J., McAloon, A. J., Yee, W. J., Foglia, T. A. 2006. A process model to estimate biodiesel production costs. Bioresour Technol 97:671–678.CrossRefGoogle Scholar
  20. Han, S.-K., Shin, H.-S. 2004. Biohydrogen production by anaerobic fermentation of food waste. Int J Hydrogen Energy 29:569–577.CrossRefGoogle Scholar
  21. IEA. 2007. Key world energy statistics. International Energy Agency, Paris. http://www.iea.org/Textbase/nppdf/free/2007/key_stats_2007.pdf.Google Scholar
  22. Jin, Y., Datye, A. K. 2000. Phase transformations in iron Fischer–Tropsch catalysts during temperature-programmed reduction. J Catal 196:8–17.CrossRefGoogle Scholar
  23. Jothimurugesan, K., Goodwin, J. G., Santosh, S. K., Spivey, J. J. 2000. Development of Fe Fischer–Tropsch catalysts for slurry bubble column reactors. Catal Today 58:335–344.CrossRefGoogle Scholar
  24. Jun, K. W., Roh, H. S., Kim, K. S., Ryu, J. S., Lee, K. W. 2004. Catalytic investigation for Fischer–Tropsch synthesis from bio-mass derived syngas. Appl Catal A 259:221–226.CrossRefGoogle Scholar
  25. Kadiman, O. K. 2005. Crops: beyond foods. In: Proceedings of the 1st International Conference on Crop Security, Malang, Indonesia, 20–23 September 2005.Google Scholar
  26. Keskin, A. 2009. Biodiesel production from free fatty acids obtained with neutralization of the crude glycerin. Energy Sour A 31:17–24.CrossRefGoogle Scholar
  27. Knothe, G., Krahl, J., Van Gerpen, J. (eds.). 2005. The Biodiesel Handbook. AOCS Press, Champaign, IL.Google Scholar
  28. Knothe, G., Sharp, C. A., Ryan, T. W. 2006. Exhaust emissions of biodiesel, petrodiesel, neat methyl esters, and alkanes in a new technology engine. Energy Fuels 20:403–408.CrossRefGoogle Scholar
  29. Ma, F., Hanna, M. A. 1999. Biodiesel production: a review. Biores Technol 70:1–15.CrossRefGoogle Scholar
  30. Meynell, P.-J. 1976. Methane: Planning a Digester. Schocken, New York.Google Scholar
  31. Mislavskaya, V. S., Leonow, V. E., Mislavskii, N. O., Ryzhak, I. A. 1982. Conditions of phase stability in a gasoline-methanol-cyclohexanol-water system. Soviet Chem Ind 14:270–276.Google Scholar
  32. Mohan, D., Pittman Jr., C. U., Steele, P. H. 2006. Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels 2006:20:848–889.Google Scholar
  33. Momirlan, M., Veziroglu, T. 1999. Recent directions of world hydrogen production. Renew Sust Energy Rev 3:219–231.CrossRefGoogle Scholar
  34. Momirlan, M., Veziroglu, T. 2002. Current status of hydrogen energy. Renew Sustain Energy Rev 6:141–79.CrossRefGoogle Scholar
  35. Osten, D. W., Sell, N. J. 1983. Methanol-gasoline blends: Blending agents to prevent phase separation. Fuel 62:268–270. CrossRefGoogle Scholar
  36. Pachauri, N., He, B. 2006. Value-added utilization of crude glycerol from biodiesel production: a survey of current research activities. ASABE Annual International Meeting, Portland, OR, 9–12 July 2006, pp. 1–16.Google Scholar
  37. Pagliaro, M., Ciriminna, R., Kimura, H., Rossi, M., Pina, C. D. 2007. From glycerol to value-added products. Angew Chem Int Ed 46:4434–440.CrossRefGoogle Scholar
  38. Perry, R. H., Green, D. W. 1997. Perry’s Chemical Engineers’ Handbook. pp2–39. McGraw-Hill, New York.Google Scholar
  39. Plass Jr., J. H., Barbir, F., Miller, H. P., Veziroglu, T. N. 1990. Economics of hydrogen as a fuel for surface transportation. Int J Hydrogen Energy 15:663–668.CrossRefGoogle Scholar
  40. Prins, M. J., Ptasinski, K. J, Janssen, F. J. J. G. 2004. Exergetic optimisation of a production process of Fischer–Tropsch fuels from biomass. Fuel Proc Technol 86:375–389.CrossRefGoogle Scholar
  41. Pryor, R. W., Hanna, M. A., Schinstock, J. L., Bashford, L. L. 1983. Soybean oil fuel in a small diesel engine. Trans ASAE 26:333–338.Google Scholar
  42. RFA. 2009. Renewable Fuels Association (RFA). Ethanol Industry Statistics, Washington, DC, USA.Google Scholar
  43. Riedel, T., Claeys, M., Schulz, H., Schaub, G., Nam, S. S., Jun, K. W., Choi, M. J., Kishan, G., Lee, K. W. 1999. Comparative study of FTS with H2/CO and H2/CO2 syngas using Fe and Co catalysts. Appl Catal A 186:201–213.CrossRefGoogle Scholar
  44. Schulz, H. 1999. Short history and present trends of FT synthesis. Appl Catal A 186:1–16.CrossRefGoogle Scholar
  45. Spath, P. L., Mann, M. K. 2000. Life cycle assessment of hydrogen production via natural gas steam reforming. National Renewable Energy Laboratory, Golden, CO, TP-570–27637, November.Google Scholar
  46. Stelmachowski, M., Nowicki, L. 2003. Fuel from synthesis gas–the role of process engineering. Appl Energy 74:85–93.CrossRefGoogle Scholar
  47. Tijmensen, M. J. A., Faaij, A. P. C., Hamelinck, C. N., van Hardeveld, M. R. M. 2002. Exploration of the possibilities for production of Fischer Tropsch liquids and power via biomass gasification. Biomass Bioenergy 23:129–152.CrossRefGoogle Scholar
  48. UN (United Nations). 2006. The emerging biofuels market: regulatory, trade and development implications. United Nations conference on trade and development, New York and Geneva.Google Scholar
  49. Wang, Y. N., Ma, W. P., Lu, Y. J., Yang, J., Xu, Y. Y., Xiang, H. W., Li, Y. W., Zhao, Y. L., Zhang, B. J. 2003. Kinetics modeling of FT synthesis over an industrial Fe-Cu-K catalyst. Fuel 82:195–213.CrossRefGoogle Scholar
  50. Wu, B. S., Bai, L., Xiang, H. W., Li, Y. W., Zhang, Z. X., Zhong, B. 2004. An active iron catalyst containing sulfur for Fischer–Tropsch synthesis. Fuel 83:205–512.CrossRefGoogle Scholar
  51. Zhang, Y., Dub, M. A., McLean, D. D., Kates, M. 2003. Biodiesel production from waste cooking oil: 2. Economic assessment and sensitivity analysis. Biores Technol 90:229–240.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2010

Authors and Affiliations

  • Ayhan Demirbas
    • 1
  • M. Fatih Demirbas
    • 2
  1. 1.Sirnak UniversitySirnakTurkey
  2. 2.University Mah.Sila Science and Energy Unlimited CompanyTrabzonTurkey

Personalised recommendations