Skip to main content

Sorption Refrigeration Systems

  • Chapter

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

The knowledge of the basic principles of thermodynamics allows us to understand the conditions and necessary limitations in order to transform heat in work, transferring heat from a thermal source of high temperature to a smaller one. Thermal machines work under this principle, however, there are machines that consume work (external) and produce heat, that is to say in the inverse sense of a thermal machine operation according to the cycle of Carnot, this it is the case of a refrigerating machine. A particular case is refrigeration cycles based on the sorption process, which operate with thermal energy and consume their own work that they self-produce, this being the coupling among a thermal machine and a refrigeration machine. There are great variety of sorption refrigeration systems, in general those of absorption and adsorption cycles.

In this chapter, the introduction of the sorption theory, its applications to refrigeration thermodynamic cycles, and its efficiencies are presented and analyzed, as well as the different possibilities of work fluids for diverse applications, showing different examples of refrigeration cycles.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aronson D (1969) Absorption refrigeration system. US Patent 3,478,530

    Google Scholar 

  • Albright LF, Doddy TC, Buclez PC et al (1960) Solubility of refrigerants 11,21 and 22 in organic solvents containing an oxygen atom. ASHRAE Trans 66:423

    Google Scholar 

  • Albright LF, Shannon PT, Terrier F et al (1962) Solubility of chlorofluoro-methanes in nonvolatile polar organic solvents. AIChE J 8(5):668

    Article  Google Scholar 

  • Albright LF, Shannon PT, Yu SN et al (1963) Solubility of sulphur dioxide in polar organic solvents. A Chem Symp Ser 59,44:66

    Google Scholar 

  • Akers JE, Squires RG, Albright LF (1965) An evaluation of alcohol-salt mixtures as absorption refrigeration solutions. ASHARAE Trans 71:14

    Google Scholar 

  • Andrews DH (1964) Refrigerant-absorbent pairs for absorption refrigeration machines. Washington DC American Gas Association

    Google Scholar 

  • Buffington RM (1933) Absorption refrigeration with solid absorbents. Refrigeration Eng 26:137

    Google Scholar 

  • Buffington RM (1949) Quality requirements for absorbent refrigerant combinations. Refrig Eng 57:343–349

    Google Scholar 

  • Blytas GC, Daniels F (1962) Concentrated solutions of NaSCN in liquid ammonia: solublity, density, vapour pressure, viscosity. Thermal conductance heat of solution and heat capacity. J Amer Chem Soc 84:1075

    Article  Google Scholar 

  • Cardwell DSL (1971) From Watt to Clausius: the rise of thermodynamics in the early industrial age. Heinemann, London

    Google Scholar 

  • Carnot S (1824) Reflexions sur la puissance motrice du feu et sur les machines propres á développer cette puissance. Bachelier Libraire, Paris

    Google Scholar 

  • Clausius R (1850) Über die bewegende Kraft der Wärme. Part I, Part II. Annalen der Physik 79 368–397, 500–524 (1851), see English translation: On the moving force of heat, and the laws regarding the nature of heat itself which are deducible therefrom. Phil Mag 2:1–21, 102–119

    Google Scholar 

  • Devault RC, Marsala J (1990) Ammonia-water triple effect absorption cycle. ASHRAE Trans 96:676–82

    Google Scholar 

  • Dueñas I, Pilatowsky I, Romero RJ et al (2001) A dynamic study of the thermal behaviour of solar thermochemical refrigerator: barium chloride-ammonia for ice production. Sol Ener Mat Sol C 70:401–413

    Article  Google Scholar 

  • Eding HJ, Brady AP (1961) Refrigerant-absorbent systems. SRI Project S/3372 Final Report, Stanford Research Institute

    Google Scholar 

  • Eggers-Lura A, Nielsen P, Stubkier BA, Worse-Schmidt P (1975) Potential use of solar powered refrigeration by an intermittent solid absorption system. Technical University of Denmark

    Google Scholar 

  • Garimella S, Christensen RN (1992) Cycle description and performance simulation of a gas-fired hydronically coupled double-effect absorption heat pump system. ASE 28, Recent research in heat pump design. ASME 7–14

    Google Scholar 

  • Grossman G, Zaltash A, Adcock PW et al (1995) Simulating a 4-effect absorption chiller. ASHRAE Jun 45–53

    Google Scholar 

  • Hainsworth WR (1944) Refrigerants and absorbents. Part I and Part II. Refrig Eng 48:97–100

    Google Scholar 

  • Hensel WE, Harlowe IW (1972) Compositions for absorption refrigeration system. US Patent 3,643,455

    Google Scholar 

  • Institut International du Froid (1958) Régles pour machines frigorifiques (Kältemaschinenregeln). German Cold Association (translated by Feniger, CK, Paris)

    Google Scholar 

  • Kandlikar SG (1982) A new absorber heat recovery cycle to improve COP of aqua-ammonia absorption refrigeration system. ASHRAE Trans 88:141–158

    Google Scholar 

  • Kaushik SC, Chandra S (1985) Computer modelling and parametric study of a double-effect generation absorption refrigeration cycle. Energy Conversion. Manag 25(1):9–14

    Article  Google Scholar 

  • Kaushik SC, Kumar RA (1987) A comparative study of an absorber heat recovery cycle for solar refrigeration using NH3-refrigerant with liquid/solid absorbents. Energy Res 11:123–132

    Article  Google Scholar 

  • Le Pierrés N, Mazet N, Stitou D (2007) Modeling and performances of a deep-freezing process using low-grade solar heat. Energy 32(2):154–164

    Article  Google Scholar 

  • Macriss RA (1976) Selecting refrigerant absorbent fluid system for solar energy utilization. ASHRAE Trans 82(1): 975–988

    Google Scholar 

  • Mansoori GA, Patel V (1979) Thermodynamic basis for the choice of working fluids for solar absorption cooling systems. Solar Energy 22(6):483–491

    Article  Google Scholar 

  • Macriss RA, Gutraj JM, Zawacki TS (1988) Absorption fluid data survey. Final report on worldwide data. ORLN/sub/8447989/3, Institute of Gas Technology

    Google Scholar 

  • Mastrangelo SVR (1959) Solubility of some chlorofluorohydrocarbons in tetraethylene glycol dimetil ether. ASHRAE J 10:64

    Google Scholar 

  • Meunier F (1998) Solid sorption heat powered cycles for cooling and heat pumping application. Appl Therm Eng 18:715–729

    Article  Google Scholar 

  • Niebergall W (1959) Sorptions Kältemaschinen. Handbuch der Kältetechnik, vol VII. Springer, Berlin

    Google Scholar 

  • Pilatowsky I, Rivera W, Romero RJ (2001) Thermodynamic analysis of monomethylamie-water solutions in a single-stage solar absorption refrigeration cycle at low generator temperatures. Sol Energ Mat Sol C 70:287–300

    Article  Google Scholar 

  • Potnis SV, Gomezplata A, Papar RA et al (1997) GAX component simulation and validation. ASHRAE Trans 103:444–453

    Google Scholar 

  • Priedeman DK, Christensen RN (1999) GAX absorption cycle design process. ASHRAE Trans 105(1):769–779

    Google Scholar 

  • Raldow W (1982) New working pair for absorption processes. In: Workshop Proceedings, Berlin. Swedish Council for Building Research

    Google Scholar 

  • Roberson JP, Lee CY, Squires RG and Albright LF (1966) Vapor pressure of ammonia and monomethylamine in solutions for absorption refrigeration system, ASHRAE Trans., 72, Part Y, 198–208.

    Google Scholar 

  • Romero RJ, Guillen L, Pilatowsky I (2005) Monomethylamine-water vapour absorption refrigeration system. Applied Thermal Engineering 25:867–879

    Article  Google Scholar 

  • Rush WF, Macriss RA, Weil SA (1967) A new fluid system for absorption refrigeration. Fourth International Congress of Heating and Air Conditioning, Paris

    Google Scholar 

  • Sargent SL, Beckman WA (1968) Theoretical performance of an Ammonia-NaSCN intermittent absorption refrigeration cycle. Sol Energy 12:137

    Article  Google Scholar 

  • Srikhirin P, Aphornratana S, Chungpaibulpatana S (2001) A review of absorption refrigeration technologies. Renew Sust Energ Rev 5(4):343–372

    Article  Google Scholar 

  • Staicovici MD (1995) Polybranched regenerative GAX cooling cycles. Int J Refrig 18(5): 318–329

    Article  Google Scholar 

  • Swedish Council for Building Research (1982) New working pairs for absorption processes. In: Raldow W (ed) Workshop Proceedings, Berlin

    Google Scholar 

  • Thomson W (Lord Kelvin) (1851) Dynamical theory of heat. Royal Soc Edin 3:48–52

    Google Scholar 

  • Tyagi KP, Rao KS (1984) Choice of absorbent-refrigerant mixtures. Energy Res 8:361–368

    Article  Google Scholar 

  • Weil SA (1960) Thermodynamic properties of lithium chloride, lithium bromide–water system. Report IGT, Project No. S/153, Institute of Gas Technology

    Google Scholar 

  • Weil SA, Ellington RT (1956) Corrosion inhibition of lithium bromide–water cooling systems. Project ZB-29, Institute of Gas Technology

    Google Scholar 

  • Yong L, Wang RZ (2007) Desorption refrigeration: a survey of novel technologies. Recent Patents on Engineering 1:1–21

    Article  MATH  Google Scholar 

  • Zellhoeffer GF (1937) Solubility of halogenated hydrocarbon refrigerants in organic solvents. Ind Eng Chem 29:548

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Pilatowsky, I., Romero, R., Isaza, C., Gamboa, S., Sebastian, P., Rivera, W. (2011). Sorption Refrigeration Systems. In: Cogeneration Fuel Cell-Sorption Air Conditioning Systems. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-84996-028-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-028-1_5

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-027-4

  • Online ISBN: 978-1-84996-028-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics