Skip to main content

Manufacturing Layout

  • Chapter
Supply Chain Engineering

Abstract

Designing a layout consists in optimally locating manufacturing facilities in order to reduce the required material handling resources and movement of material. Evidently, this leads to cost reduction. Static layout models are presented in the first part of the chapter. They are used when the environment can be considered as steady. The basic static models and their characteristics are provided. K-mean analysis, often required for designing functional departments, as well as cross-decomposition, used to design cells, are both explained and carefully illustrated. Note that these two approaches are commonly used beyond layout design. The standard approaches (CORELAP, INRIA-SAGEP, CRAFT) to locate manufacturing entities on the space available are reviewed and spotlighted. They close the first part of the chapter. Dynamic layout models make up the second part. These models are studied because they cope well with an ever-changing market environment. Dynamic facility layouts approaches, which are flexible and easy to reconfigure, and robust layout techniques, which can be used efficiently over many product mixes and volumes, complete the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

References

  • Arimond J, Ayles WR (1993) Phenolics creep up on engine application. Adv. Mater. Proc. 143(6):34–36

    Google Scholar 

  • Garcia H, Proth J-M (1986) A new cross-decomposition algorithm: the GPM. Comparison with the bond energy method. Contr. Cyber. 15(2):115–165

    MathSciNet  Google Scholar 

  • Hamann T (1992) Le problème d’agencement des ressources à l’intérieur des cellules des systèmes de production. Dissertation, University of Metz

    Google Scholar 

  • Heragu SS, Kochhar JS (1994) Material handling issues in adaptive manufacturing systems. In: Malstrom EM, Pence IW Jr (eds) The Materials Handling Engineering Division 75-th Anniversary Commemorative Volume, ASME, New York, NY

    Google Scholar 

  • Koren Y, Heisel U, Jovane F, Moriwaki T, Pritschow G, Ulsoy G, Van Brussel H (1999) Reconfigurable manufacturing systems. Ann. CIRP 48(2):527–540

    Article  Google Scholar 

  • Kuhn HW (1955) The Hungarian method for the assignment problem. Nav. Res. Log. Quart. 2:83–97

    Article  Google Scholar 

  • McKendall ARJr, Shang J, Kuppusamy S (2006) Simulated annealing heuristics for the dynamic facility layout problem. Comput. Oper. Res. 33(8):2431–2444

    Article  MATH  MathSciNet  Google Scholar 

  • Mehrabi MG, Ulsoy AG, Koren Y, Heytler P (2002) Trends and perspectives in flexible and reconfigurable manufacturing systems. J. Intell. Manuf. 13:135–146

    Article  Google Scholar 

  • Rosenblatt MJ, Lee HL (1987) A robustness approach to facilities design. Int. J. Prod. Res. 25(4):479–486

    Article  Google Scholar 

  • Souilah A (1994) Les systèmes cellulaires de production : l’agencement inter-cellules. Dissertation, University of Metz

    Google Scholar 

  • Tompkins JA, White JA, Bozer Y, Frazelle E, Tanchoco J, Trevino J (1996) Facilities Planning. 2nd edn, John Wiley & Sons, New York, NY

    Google Scholar 

Further Reading

  • Afentakis P, Millen RA, Solomon MM (1990) Dynamic layout strategies for flexible manufacturing systems. Int. J. Prod. Res. 28(2):311–323

    Article  Google Scholar 

  • Agarwal A, Sarkis J (2001) Evaluating functional and cellular manufacturing systems: a model and case analysis. Int. J. Manuf. Techn. Manag. 3(6):528–549

    Article  Google Scholar 

  • Antonsson E, Sebastian H-J (1999) Fuzzy sets in engineering design. In: Zimmermann H-J (ed), Practical Applications of Fuzzy Technologies, Kluwer Academic Publishers, London, pp. 57 – 117

    Google Scholar 

  • Arapoglu RA, Norman BA, Smith AE (2001) Locating input and output points in facilities design – a comparison of constructive, evolutionary, and exact methods. IEEE Trans. Evol. Comput. 5(3):192–203

    Article  Google Scholar 

  • Armour GC, Buffa ES, Vollmann TE (1964) Allocating facilities with CRAFT. Harv. Bus. Rev. 42:136–158

    Google Scholar 

  • Balakrishman J, Jacobs FR, Venkataramanan MA (1992) Solutions for the constrained dynamic facility layout problem. Eur. J. Oper. Res. 57(2):280–286

    Article  Google Scholar 

  • Ballou RH (1968) Dynamic warehouse location analysis. J. Mark. Res. 5:271–275

    Article  Google Scholar 

  • Banerjee P, Zhou Y, Montreuil B (1997) Genetically assisted optimization of cell layout and material flow path skeleton. IIE Trans. 29:277–291

    Google Scholar 

  • Bard JF, Feo TA (1989) Operations sequencing in discrete parts manufacturing. Manag. Sci. 35:249–255

    Article  MATH  MathSciNet  Google Scholar 

  • Bazaraa MS (1975) Computerized layout design: a branch and bound approach. AIIE Trans. 7(4):432–437

    MathSciNet  Google Scholar 

  • Benjaafar S, Sheikhzadeh M (2000) Design of flexible plant layouts. IIE Trans. 32(4):309–322

    Google Scholar 

  • Benjaafar S, Heragu SS, Irani SA (2002) Next generation factory layouts: research challenges and recent progress. Interfaces 32(6):58–76

    Article  Google Scholar 

  • Benson B, Foote BL (1997) DoorFAST: A constructive procedure to optimally layout a facility including aisles and door locations based on an aisle flow distance metric. Int. J. Prod. Res. 35(7):1825–1842

    Article  MATH  Google Scholar 

  • Beziat P (1990) Conception d’un système d’implantation d’ateliers de production: PLOOT. Dissertation, University of Languedoc

    Google Scholar 

  • Braglia M, Zanoni S, Zavanella L (2003) Layout design in dynamic environment: strategies and quantitative indices. Int. J. Prod. Res. 41(5):995–1016

    Article  MATH  Google Scholar 

  • Drezner Z (1980) DISCON: a new method for the layout problem. Oper. Res. 28(6):1375–1384

    Article  MATH  MathSciNet  Google Scholar 

  • Dolgui A, Proth J-M (2006) Les Systèmes de Production Modernes. Hermes Science Publications, London.

    Google Scholar 

  • Harhalakis G, Ioannou G, Minis I, Nagi R (1994) Manufacturing cell formation under random product demand. Int. J. Prod. Res. 32(1):47–64

    Article  MATH  Google Scholar 

  • Harhalakis G, Nagi R, Proth J-M (1990) An efficient heuristic in manufacturing cell formation for group technology applications. Int. J. Prod. Res. 28(1):185–198

    Article  Google Scholar 

  • Hassan MMD, Hogg GL, Smith DR (1986) SHAPE: A construction algorithm for area placement evaluation. Int. J. Prod. Res. 24(5):1283–1295

    Article  MATH  Google Scholar 

  • Herrmann JW, Ioannou G, Minis I, Nagi R, Proth J-M (1995) Design of material flow networks in manufacturing facilities. J. Manuf. Syst. 14(4):277–289

    Article  Google Scholar 

  • Kim J, Klein CM (1996) Location of departmental pickup and delivery points for an AGV system. Int. J. Prod. Res. 34(2):407–420

    Article  MATH  Google Scholar 

  • King JR (1980) Machine-component grouping in production flow analysis: An approach using rank order clustering algorithm. Int. J. Prod. Res. 18(2):213–232

    Article  Google Scholar 

  • Kouvelis P, Kiran AS (1991) Single and multiple period layout models for automated manufacturing systems. Eur. J. Oper. Res. 52(3):300–314

    Article  MATH  Google Scholar 

  • Kusiak A, Heragu SS (1987) The facility layout problem. Eur. J. Oper. Res. 29(3):229–251

    Article  MATH  MathSciNet  Google Scholar 

  • Lee RC, Moore JM (1967) CORELAP: Computerized Relationship Layout Planning. J. Ind. Eng. 18:195–200

    Google Scholar 

  • Meller RD, Gau KY (1996) Facility layout objective functions and robust layouts. Int. J. Prod. Res. 34(10):2727–2742

    Article  MATH  Google Scholar 

  • Meller RD, Narayanan V, Vance PH (1998) Optimal facility layout design. Oper. Res. Lett. 23(3–5):117–127

    Article  MATH  MathSciNet  Google Scholar 

  • Meng G, Heragu SS, Zijm H (2004) Reconfigurable layout problem. Int. J. Prod. Res. 42(22):4709–4729

    Article  MATH  Google Scholar 

  • Montreuil B (2007) Layout and location of facilities, In: Don Taylor G (ed), Handbook on Logistics Engineering, CRC Press, Boca Raton, FL

    Google Scholar 

  • Norman BA, Arapoglu RA, Smith AE (2001) Integrated facilities design using a contour distance metric. IIE Trans. 33(4):337–344

    Google Scholar 

  • Pierreval H, Caux C, Paris JL, Viguier F (2003). Evolutionary approaches to the design and organization of manufacturing systems. Comput. Ind. Eng. 44(3):339–364

    Article  Google Scholar 

  • Proth J-M (1992) Conception et Gestion des Systèmes de Production. Presses Universitaires de France, Paris

    Google Scholar 

  • Ramabhatta V, Nagi R (1998) An integrated formulation of manufacturing cell formation with capacity planning and multiple routings. Ann. Oper. Res. 77:79–95

    Article  MATH  Google Scholar 

  • Scott MJ, Antonsson EK (2000) Arrow’s theorem and engineering design decision making. Res. Eng. Des. 11(4):218–228

    Article  Google Scholar 

  • Sebastian H-J, Antonsson EK (eds) (1996) Fuzzy Sets in Engineering Design and Configuration. Kluwer Academic Publishers, London

    MATH  Google Scholar 

  • Sweeney DJ, Tatham RL (1976) An improved long-run model for multiple warehouse location. Manag. Sci. 22:748–758

    Article  MATH  MathSciNet  Google Scholar 

  • Urban TL, Chiang WC, Russell RA (2000) The integrated machine allocation and layout problem. Int. J. Prod. Res. 38(13):2911–2930

    Article  Google Scholar 

  • Wang S-J, Bhadury J, Nagi R (2002) Supply facility and input/output point locations in the presence of barriers. Comput. Oper. Res. 29(6):685–699

    Article  MATH  Google Scholar 

  • Webster DB, Tyberghein MB (1980) Measuring flexibility of job-shop layouts. Int. J. Prod. Res. 18:21–29

    Article  Google Scholar 

  • Zhou L, Nagi R (2002) Design of distributed information systems for agile manufacturing virtual enterprises using CORBA and STEP standards. J. Manuf. Syst. 21(1):14–31

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Limited

About this chapter

Cite this chapter

(2010). Manufacturing Layout. In: Supply Chain Engineering. Springer, London. https://doi.org/10.1007/978-1-84996-017-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-017-5_10

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-016-8

  • Online ISBN: 978-1-84996-017-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics