Skip to main content

Development of High-Speed Actuator for Scanning Probe Microscopy

  • Chapter
Next-Generation Actuators Leading Breakthroughs

Abstract

A novel closed-loop regulation of a piezoelectric actuator is presented to implement wide-band and hysteresis-free motion required for high speed operation of scanning probe microscopy. Velocity of the actuator’s motion is detected via induced current, and converted to displacement by integration. By appropriately applying both velocity and displacement feedbacks, the fundamental resonance of the actuator was completely eliminated and other subresonances were significantly suppressed. A bandwidth of ca. 300 kHz for dynamic operation was achieved consequently. Actuator’s intrinsic hysteresis was also significantly suppressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kodera N, Yamashita H and Ando T (2005) Rev. Sci. Instrum. 76: 053708

    Article  Google Scholar 

  2. Mizutani K, Kawano T and Tanaka Y (1990) Prec. Eng. 12:219

    Article  Google Scholar 

  3. Ge P and Jouaneh M (1995) Precis. Eng. 17: 211

    Article  Google Scholar 

  4. Newcomb CV and Flinn I(1982) Electron. Lett., 18: 442

    Article  Google Scholar 

  5. Furutani K, Urushibata M and Mohri N (1998) Nanotechnology 9: 93

    Article  Google Scholar 

  6. Furutani K, Urushibata M and Mohri N (1998) Proceedings of the 1998 IEEE International Conference on Robotics and Automation 1504

    Google Scholar 

  7. Ando T, Kodera N, Takai E, Maruyama D, Saito K and Toda A(2001) Proc. Natl. Acad. Sci. USA 98: 12468

    Article  Google Scholar 

  8. Mertz J, Marti O and Mlynek J (1993) Appl. Phys. Lett. 62: 2344

    Article  Google Scholar 

  9. Anczykowski B, Cleveland JP, Krügen D, Elings V and Fuchs H(1998) Appl. Phys. A, 66: S885

    Article  Google Scholar 

  10. Humphris ADL, Tamayo J and Miles MJ(2000) Langmuir 16: 7891

    Article  Google Scholar 

  11. Sulchek T, Hsieh R, Adams JD, Yaralioglu GG, Minne SC, Quate CF, Cleveland JP, Atalar A and Adderton DM (2000) Appl. Phys. Lett. 76: 1473 Yasuhiro Sugawara, Yan Jun Li, Yoshitaka Naitoh and Masami Kageshima

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Limited

About this chapter

Cite this chapter

Sugawara, Y., Li, Y., Naitoh, Y., Kageshima, M. (2010). Development of High-Speed Actuator for Scanning Probe Microscopy. In: Higuchi, T., Suzumori, K., Tadokoro, S. (eds) Next-Generation Actuators Leading Breakthroughs. Springer, London. https://doi.org/10.1007/978-1-84882-991-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-991-6_5

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-990-9

  • Online ISBN: 978-1-84882-991-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics