Skip to main content

Development of Environmental-Friendly Lead-Free Piezoelectric Materials for Actuator Uses

  • Chapter
Next-Generation Actuators Leading Breakthroughs

Abstract

We have currently investigated the piezoelectric properties of bismuth tungstate, Bi2WO6 (BWO), mono-domain crystals and baium titanate, BaTiO3 (BT), based ceramics for use at high temperature. For BWO, the crystals grown by a slow cooling technique were characterized. The resonance response revealed that the BWO crystals maintained their piezoelectricity up to 400°C. In the solid solution ceramics of the BT-(Bi1/2Na1/2)TiO3 (BNT) system, we disclosed that the Curie temperature T c can be controlled from 130 to approximately 220°C. BNT-substituted BT ceramics showed a low temperature dependence of the piezoelectric constant up to 160°C. We also synthesized (K,Na)NbO3–LiNbO3–CuO leadfree piezoelectric ceramics that show a high mechanical quality factor Q m of 1400, a high d 15 of 207 pC/N, and a high k15 of 0.72. Using the shear vibration mode of the ceramics, an ultrasonic motor driven with four piezoelectric ceramic plates was developed. The highest revolution speed of 486 rpm was achieved at 34.5 kHz with the input voltage of approximately 180 Vp-p (peak to peak).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wolfe RW, Newnahm NE, Kay MI (1969) Crystal structure of Bi2WO6. Solid State Comm 7:1797-1801

    Article  Google Scholar 

  2. Takeda H, Nishida T, Okamura S, Shiosaki T (2005) Crystal growth of bismuth tungstate Bi2WO6 by slow cooling method using borate fluxes. J Euro Ceram Soc 25:2731-2734

    Article  Google Scholar 

  3. Takeda H, Nishida M, Nshida T, Shiosaki T (2007) Growth of bismuth tungstate Bi2WO6 mono-domain crystals and chemical etching for measuring their electrical properties. Trans Mater Res Soc Jpn 32 :11-14

    Google Scholar 

  4. (1987)IEEE Standard on Piezoelectricity 176-1987

    Google Scholar 

  5. Smolensky GA, Isupov VA, Agranovskaya AI, Krainik NN (1961) New ferroelectrics of complex composition IV. Sov Phys Solid State 2:2651-2654

    Google Scholar 

  6. Takenaka T, Maruyama K, Sakata K (1991) (Bi1/2Na1/2)TiO3-BaTiO3 system for lead-free piezoelectric ceramics. Jpn J Appl Phys 30:2236-2239

    Article  Google Scholar 

  7. Sheets SA, Soukhojak AN, Ohashi N, Chiang YM (2001) Relaxor single crystals in the (Bi1/2Na1/2)1–xBaxZryTi1–yO3 system exhibiting high electrostrictive strain. J Appl Phys 90:5287-5295.

    Article  Google Scholar 

  8. Nagata H, Takenaka T (2001) Additive effects on electrical properties of (Bi1/2Na1/2)TiO3 ferroelectric ceramics. J Euro Ceram Soc 21:1299-1302

    Article  Google Scholar 

  9. The Japan Industrial Standard (2002) Method for measurement of pyroelectric coefficient of fine ceramics. JIS R1651 [in Japanese]

    Google Scholar 

  10. Sanson A, Whatmore RW (2002) Properties of Bi4Ti3O12-(Na1/2Bi1/2)TiO3 piezoelectric ceramics. Jpn J Appl Phys 41:7127-7130

    Article  Google Scholar 

  11. Uchino K (1997) Piezoelectric Actuators and Ultrasonic Motors. Kluwer Academic, Boston

    Google Scholar 

  12. Tamura H, Iwase M, Hirose S, Aoyagi M, Takano T, Tomikawa Y (2008) Measurement of LiNbO3 rectangular plate under large vibration velocity of the first longitudinal and second flexural modes. Jpn J Appl Phys 47:4034-4040

    Article  Google Scholar 

  13. Doshida Y, Kishimoto S, Ishii K, Kishi H, Tamura H, Tomikawa Y, Hirose S (2007) Miniature cantilever-type ultrasonic motor using Pb-free multilayer piezoelectric ceramics. Jpn J Appl Phys 46:4921-4925

    Article  Google Scholar 

  14. Doshida Y, Kishimoto S, Irieda T, Tamura H, Tomikawa Y, Hirose S (2008) Double-mode miniature cantilever-type ultrasonic motor using lead-free array-type multilayer piezoelectric ceramics. Jpn J Appl Phys 47:4242-4247

    Article  Google Scholar 

  15. Aoyagi M, Murasawa Y, Ogasawara T, Tomikawa Y (1997) Experimental characteristics of a bolt-clamped short-cylindrical torsional vibrator using shear mode piezoceramics inserted in the axial direction. Jpn J Appl Phys 36:3126-3129

    Article  Google Scholar 

  16. Uchino K, Dong S, Strauss MT (2006) U.S. Patent 7095160B2

    Google Scholar 

  17. Imabayashi H, Funakubo T (1994) Jpn Kokai Tokkyo Koho JP 1994113565. [in Japanese].

    Google Scholar 

  18. Li E, Kakemoto H, Hoshina T, Tsurumi T (2008) A shear-mode ultrasonic motor using potassium sodium niobate-based ceramics with high mechanical quality factor. Jpn J Appl Phys 47:7702-7706

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Limited

About this chapter

Cite this chapter

Takeda, H., Li, E., Nishida, T., Hoshina, T., Tsurumi, T. (2010). Development of Environmental-Friendly Lead-Free Piezoelectric Materials for Actuator Uses. In: Higuchi, T., Suzumori, K., Tadokoro, S. (eds) Next-Generation Actuators Leading Breakthroughs. Springer, London. https://doi.org/10.1007/978-1-84882-991-6_36

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-991-6_36

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-990-9

  • Online ISBN: 978-1-84882-991-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics