Skip to main content

Bone-Anabolic Impact of Dietary High Protein Intake Compared with the Effects of Low Potential Renal Acid Load, Endogenous Steroid Hormones, and Muscularity in Children

  • Chapter
  • First Online:
Nutritional Influences on Bone Health
  • 1004 Accesses

Abstract

In addition to genetics, muscle mass and endocrine factors are major determinants of skeletal mineralization, bone mass, and bone strength. Among the modifiable factors which relevantly influence bone parameters, nutrition plays an important role. Until now, almost all corresponding studies on bone have focused on dietary or hormonal influences alone, thereby considering body size-related factors like BMI, fat mass, or lean body mass either as confounders or as additional potential predictors. However, examinations combining all these three determinants (muscularity, specific hormones, and dietary factors) to evaluate their respective possible contributions to bone status are lacking. Therefore, we studied the potential influences on diaphyseal cortical bone of the muscular component as indexed by muscle area, steroid hormones as quantified in 24-h urine samples, and dietary factors obtained from repeated diet records all combined in healthy children. Regarding nutrition, a special emphasis was placed on dietary alkalinity and protein intake.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

17b-HSD:

17b-Hydroxysteroid dehydro­genase

DHEA:

Dehydroepiandrosterone

NAE:

Net acid excretion

NEAP:

Net endogenous acid production

pQCT:

Peripheral quantitative computed tomography

PRAL:

Potential renal acid load

References

  1. Houillier P, Normand M, Froissart M, et al. Calciuric response to an acute acid load in healthy subjects and hypercalciuric calcium stone formers. Kidney Int. 1996;50:987-997.

    Article  PubMed  CAS  Google Scholar 

  2. Moe OW, Huang CL. Hypercalciuria from acid load: renal mechanisms. J Nephrol. 2006;19(suppl 9):S53-S61.

    PubMed  CAS  Google Scholar 

  3. Krieger NS, Frick KK, Bushinsky DA. Mechanism of acid-induced bone resorption. Curr Opin Nephrol Hypertens. 2004;13:423-436.

    Article  PubMed  CAS  Google Scholar 

  4. Eaton SB, Eaton SB III. Paleolithic vs. modern diets–selected pathophysiological implications. Eur J Nutr. 2000;39:67-70.

    Article  PubMed  CAS  Google Scholar 

  5. Remer T, Manz F. Paleolithic diet, sweet potato eaters, and potential renal acid load. Am J Clin Nutr. 2003;78:802-803; author reply 803-804.

    PubMed  CAS  Google Scholar 

  6. Remer T, Manz F. Potential renal acid load of foods and its influence on urine pH. J Am Diet Assoc. 1995;95:791-797.

    Article  PubMed  CAS  Google Scholar 

  7. Remer T, Manz F. Estimation of the renal net acid excretion by adults consuming diets containing variable amounts of protein. Am J Clin Nutr. 1994;59:1356-1361.

    PubMed  CAS  Google Scholar 

  8. Eaton-Evans J, Mcllrath EM, Jackson WE, et al. Dietary factors and vertebral bone density in perimenopausal women from a general medical practice in Northern Ireland. Proc Nutr Soc. 1993;52:44A.

    Google Scholar 

  9. Michaelsson K, Holmberg L, Mallmin H, et al. Diet, bone mass, and osteocalcin: a cross-sectional study. Calcif Tissue Int. 1995;57:86-93.

    Article  PubMed  CAS  Google Scholar 

  10. New SA, Bolton-Smith C, Grubb DA, et al. Nutritional influences on bone mineral density: a cross-sectional study in premenopausal women. Am J Clin Nutr. 1997;65:1831-1839.

    PubMed  CAS  Google Scholar 

  11. Tucker KL, Hannan MT, Chen H, et al. Potassium, magnesium, and fruit and vegetable intakes are associated with greater bone mineral density in elderly men and women. Am J Clin Nutr. 1999;69:727-736.

    PubMed  CAS  Google Scholar 

  12. New SA, Robins SP, Campbell MK, et al. Dietary influences on bone mass and bone metabolism: further evidence of a positive link between fruit and vegetable consumption and bone health? Am J Clin Nutr. 2000;71:142-151.

    PubMed  CAS  Google Scholar 

  13. Jones G, Riley MD, Whiting S. Association between urinary potassium, urinary sodium, current diet, and bone density in prepubertal children. Am J Clin Nutr. 2001;73:839-844.

    PubMed  CAS  Google Scholar 

  14. Chen Y, Ho SC, Lee R, et al. Fruit intake is associated with better bone mass among Hong Kong Chinese early postmenopausal women. J Bone Miner Res. 2001;16(suppl 1):S386.

    Google Scholar 

  15. Miller DR, Krall EA, Anderson JJ, et al. Dietary mineral intake and low bone mass in men: The VALOR Study. J Bone Miner Res. 2001;16(suppl 1):S395.

    Google Scholar 

  16. Stone KL, Blackwell T, Orwoll ES, et al. The relationship between diet and bone mineral density in older men. J Bone Miner Res. 2001;16(suppl 1):S388.

    Google Scholar 

  17. Tylavsky FA, Holliday K, Danish R, et al. Fruit and vegetable intakes are an independent predictor of bone size in early pubertal children. Am J Clin Nutr. 2004;79:311-317.

    PubMed  CAS  Google Scholar 

  18. New SA, MacDonald HM, Campbell MK, et al. Lower estimates of net endogenous non-carbonic acid production are positively associated with indexes of bone health in premenopausal and perimenopausal women. Am J Clin Nutr. 2004;79:131-138.

    PubMed  CAS  Google Scholar 

  19. McGartland CP, Robson PJ, Murray LJ, et al. Fruit and vegetable consumption and bone mineral density: the Northern Ireland Young Hearts Project. Am J Clin Nutr. 2004;80:1019-1023.

    PubMed  CAS  Google Scholar 

  20. Macdonald HM, New SA, Fraser WD, et al. Low dietary potassium intakes and high dietary estimates of net endogenous acid production are associated with low bone mineral density in premenopausal women and increased markers of bone resorption in postmenopausal women. Am J Clin Nutr. 2005;81:923-933.

    PubMed  CAS  Google Scholar 

  21. Hirota T, Kusu T, Hirota K. Improvement of nutrition stimulates bone mineral gain in Japanese school children and adolescents. Osteoporos Int. 2005;16:1057-1064.

    Article  PubMed  Google Scholar 

  22. Vatanparast H, Baxter-Jones A, Faulkner RA, et al. Positive effects of vegetable and fruit consumption and calcium intake on bone mineral accrual in boys during growth from childhood to adolescence: the University of Saskatchewan Pediatric Bone Mineral Accrual Study. Am J Clin Nutr. 2005;82:700-706.

    PubMed  CAS  Google Scholar 

  23. Chen YM, Ho SC, Woo JL. Greater fruit and vegetable intake is associated with increased bone mass among postmenopausal Chinese women. Br J Nutr. 2006;96:745-751.

    Article  PubMed  CAS  Google Scholar 

  24. Prynne CJ, Mishra GD, O’Connell MA, et al. Fruit and vegetable intakes and bone mineral status: a cross sectional study in 5 age and sex cohorts. Am J Clin Nutr. 2006;83:1420-1428.

    PubMed  CAS  Google Scholar 

  25. Welch AA, Bingham SA, Reeve J, et al. More acidic dietary acid-base load is associated with reduced calcaneal broadband ultrasound attenuation in women but not in men: results from the EPIC-Norfolk cohort study. Am J Clin Nutr. 2007;85:1134-1141.

    PubMed  CAS  Google Scholar 

  26. Heaney RP, Layman DK. Amount and type of protein influences bone health. Am J Clin Nutr. 2008;87:1567S-1570S.

    PubMed  CAS  Google Scholar 

  27. Schurch MA, Rizzoli R, Slosman D, et al. Protein supplements increase serum insulin-like growth factor-I levels and attenuate proximal femur bone loss in patients with recent hip fracture. A randomized, double-blind, placebo-controlled trial. Ann Intern Med. 1998;128:801-809.

    PubMed  CAS  Google Scholar 

  28. Alexy U, Remer T, Manz F, et al. Long-term protein intake and dietary potential renal acid load are associated with bone modeling and remodeling at the proximal radius in healthy children. Am J Clin Nutr. 2005;82:1107-1114.

    PubMed  CAS  Google Scholar 

  29. U.S. Department of Agriculture. National Nutrient Database for Standard Reference; 2009. Available at: http://www.nal.usda.gov/fnic/foodcomp/search/. Accessed June 19, 2009.

  30. Frassetto LA, Morris RC Jr, Sebastian A. A practical approach to the balance between acid production and renal acid excretion in humans. J Nephrol. 2006;19(suppl 9):S33-S40.

    PubMed  CAS  Google Scholar 

  31. Souci SW, Fachmann W, Kraut H. Die Zusammensetzung der Lebensmittel. Nährwert-Tabellen. Stuttgart: Medpharm Scientific Publishers; 1994.

    Google Scholar 

  32. Larsson SC, Wolk K, Brismar K, et al. Association of diet with serum insulin-like growth factor I in middle-aged and elderly men. Am J Clin Nutr. 2005;81:1163-1167.

    PubMed  CAS  Google Scholar 

  33. Hoppe C, Udam TR, Lauritzen L, et al. Animal protein intake, serum insulin-like growth factor I, and growth in healthy 2.5-y-old Danish children. Am J Clin Nutr. 2004;80:447-452.

    PubMed  CAS  Google Scholar 

  34. Syed F, Khosla S. Mechanisms of sex steroid effects on bone. Biochem Biophys Res Commun. 2005;328:688-696.

    Article  PubMed  CAS  Google Scholar 

  35. Remer T, Boye KR, Hartmann M, et al. Adrenarche and bone modeling and remodeling at the proximal radius: weak androgens make stronger cortical bone in healthy children. J Bone Miner Res. 2003;18:1539-1546.

    Article  PubMed  Google Scholar 

  36. Remer T, Manz F, Hartmann MF, et al. Prepubertal healthy children’s urinary androstenediol predicts diaphyseal bone strength in late puberty. J Clin Endocrinol Metab. 2009;94:575-578.

    Article  PubMed  CAS  Google Scholar 

  37. Remer T, Boye KR, Hartmann MF, et al. Urinary markers of adrenarche: reference values in healthy subjects aged 3–18 years. J Clin Endocrinol Metab. 2005;90:2015-2021.

    Article  PubMed  CAS  Google Scholar 

  38. Luu-The V. Analysis and characteristics of multiple types of human 17 beta-hydroxysteroid dehydrogenase. J Steroid Biochem Mol Biol. 2001;76:143-151.

    Article  PubMed  CAS  Google Scholar 

  39. Labrie F, Luu-The V, Lin SX, et al. Role of 17 beta-hydroxysteroid dehydrogenases in sex steroid formation in peripheral intracrine tissues. Trends Endocrinol Metab. 2000;11:421-427.

    Article  PubMed  CAS  Google Scholar 

  40. Libuda L, Alexy U, Remer T, et al. Association between long-term consumption of soft drinks and variables of bone modeling and remodeling in a sample of healthy German children and adolescents. Am J Clin Nutr. 2008;88:1670-1677.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Remer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer London

About this chapter

Cite this chapter

Remer, T., Libuda, L. (2011). Bone-Anabolic Impact of Dietary High Protein Intake Compared with the Effects of Low Potential Renal Acid Load, Endogenous Steroid Hormones, and Muscularity in Children. In: Burckhardt, P., Dawson-Hughes, B., Weaver, C. (eds) Nutritional Influences on Bone Health. Springer, London. https://doi.org/10.1007/978-1-84882-978-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-978-7_27

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-977-0

  • Online ISBN: 978-1-84882-978-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics