Skip to main content

Knot and Link Invariants

  • Chapter
  • First Online:
Topics in Physical Mathematics
  • 1963 Accesses

Abstract

In this chapter we make some historical observations and comment on some early work in knot theory. Invariants of knots and links are introduced in Section 11.2. Witten’s interpretation of the Jones polynomial via the Chern–Simons theory is discussed in Section 11.3. A new invariant of 3-manifolds is obtained as a byproduct of this work by an evaluation of a certain partition function of the theory. We already met this invariant, called the Witten–Reshetikhin–Turaev (or WRT) invariant in Chapter 10. In Section 11.4 we discuss the Vassiliev invariants of singular knots. Gauss’s formula for the linking number is the starting point of some more recent work on self-linking invariants of knots by Bott, Taubes, and Cattaneo. We will discuss their work in Section 11.5. The self-linking invariants were obtained earlier by physicists using Chern–Simons perturbation theory. This work now forms a small part of the program initiated by Kontsevich [235] to relate topology of low-dimensional manifolds, homotopical algebras, and non-commutative geometry with topological field theories and Feynman diagrams in physics. See also the book [176] by Guadagnini. Khovanov’s categorification of the Jones polynomial by Khovanov homology is the subject of Section 11.6. We would like to remark that in recent years many applications of knot theory have been made in chemistry and biology (for a brief of discussion of these and further references see, for example, [260]). Some of the material in this chapter is from my article [263]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Appel, K., Haken, W.: The solution of the four-color-map problem. Sci. Amer. Sept., 108–121 (1977)

    Google Scholar 

  2. Arnold, V.I.: The Vassiliev theory of discriminants and knots. In: First European Cong. Math. vol. I Prog. in Math., # 119, pp. 3–29. Birkḧauser, Berlin (1994)

    Chapter  Google Scholar 

  3. Atiyah, M.: The Geometry and Physics of Knots. Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  4. Axelrod, S., Singer, I.: Chern–Simons perturbation theory. J. Diff. Geom. 39, 787–902 (1994)

    MathSciNet  Google Scholar 

  5. Axelrod, S., et al.: Geometric quantization of Chern–Simons gauge theory: I. J. Diff. Geom. 33, 787–902 (1991)

    MathSciNet  MATH  Google Scholar 

  6. Bar-Natan, D.: Perturbative aspects of the Chern–Simons topological quantum field theory. Ph.D. thesis, Princeton University (1991)

    Google Scholar 

  7. Bar-Natan, D.: Vassiliev’s knot invariant. Topology 34, 423–472 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bar-Natan, D.: On Khovanov’s categorification of the jones polynomial. Alg. & Geo. Top. 2, 337–370 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Birman, J.S.: Braids, links and the mapping class groups. Ann. Math. Studies, # 82. Princeton University Press, Princeton (1994)

    Google Scholar 

  10. Bott, R., Cattaneo, A.S.: Integral invariants of 3-manifolds. J. Diff. Geom. 48, 357–361 (1998)

    MathSciNet  Google Scholar 

  11. Bott, R., Cattaneo, A.S.: Integral invariants of 3-manifolds. II. J. Diff. Geom. 53, 1–13 (1999)

    MathSciNet  MATH  Google Scholar 

  12. Bott, R., Taubes, C.: On the self-linking of knots. J. Math. Phys. 35, 5247–5287 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cotta-Ramusino, P., et al.: Quantum field theory and link invariants. Nuc. Phy. 330B, 557–574 (1990)

    Article  MathSciNet  Google Scholar 

  14. Crane, L.: 2-d physics and 3-d topology. Comm. Math. Phys. 135, 615–640 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fadell, E.R., Husseini, S.Y.: Geometry and Topology of Configuration Spaces. Springer-Verlag, Berlin (2001)

    Book  MATH  Google Scholar 

  16. Freyd, R., et al.: A new polynomial invariant of knots and links. Bull. Amer. Math. Soc. (N.S.) 12, 239–246 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  17. Frohman, C., Nicas, A.: The alexander polynomial via topological quantum field theory. In: Differential Geometry, Global Analysis and Topology. Can. Math. Soc. Conf. Proc. vol. 12, pp. 27–40. Am. Math. Soc., Providence (1992)

    Google Scholar 

  18. Fulton, W., MacPherson, R.: Compactification of configuration spaces. Ann. Math. 139, 183–225 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  19. Guadagnini, E.: The Link Invariants of the Chern–Simons Field Theory. de Gruyter, Berlin (1993)

    Book  MATH  Google Scholar 

  20. Guadagnini, E., et al.: Perturbative aspects of Chern–Simons field theory. Phys. Lett. B 227, 111–117 (1989)

    MathSciNet  Google Scholar 

  21. Guadagnini, E., et al.: Wilson lines in Chern–Simons theory and link invariants. Nuc. Phy. 330B, 575–607 (1990)

    Article  MathSciNet  Google Scholar 

  22. Haken, W.: Theorie der Normalflachen. Acta Math. 105, 245–375 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hoste, J., Thistlethwaite, M., Weeks, J.: The first 1,701,936 knots. Math. Intelligencer 20, # 4, 33–48 (1998)

    Article  MathSciNet  Google Scholar 

  24. Jacobsson, M.: An invariant of link cobordisms from Khovanov homology. Alg. & Geo. Top. 4, 1211–1251 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Jones, V.: On knot invariants related to some statistical mechanical models. Pac. J. Math. 137, 311–334 (1989)

    Article  MATH  Google Scholar 

  26. Jones, V.F.R.: A polynomial invariant for knots via von Neumann algebras. Bull. Amer. Math. Soc. 12, 103–111 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  27. Jones, V.F.R.: Hecke algebra representations of braid groups and link polynomials. Ann. Math. 126, 335–388 (1987)

    Article  MATH  Google Scholar 

  28. Kassel, C., Turaev, V.: Braid Groups. Grad. Texts in Math., #247. Springer-Verlag, New York (2008)

    Book  MATH  Google Scholar 

  29. Kauffman, L.H.: Knots and Physics. Series on Knots and Everything - vol. 1, 3rd Edition. World Scientific, Singapore (2001)

    Book  MATH  Google Scholar 

  30. Khovanov, M.: A categorification of the Jones polynomial. Duke Math. J. 101, 359–426 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kirby, R., Melvin, P.: Evaluation of the 3-manifold invariants of Witten and Reshetikhin–Turaev. In: S.K. Donaldson, C.B. Thomas (eds.) Geometry of Low-dimensional Manifolds, vol. II, Lect. Notes # 151, pp. 101–114. London Math. Soc., London (1990)

    Google Scholar 

  32. Kirillov, A.N., Reshetikhin, N.Y.: Representations of the algebra U q (SL(2, C)), q-orthogonal polynomials and invariants of links. In: V.G. Kac (ed.) Infinite dimensional Lie algebras and groups, pp. 285–339. World Sci., Singapore (1988)

    Google Scholar 

  33. Kock, J.: Frobenius Algebras and 2D Topological Quantum Field Theories. LMS Student Texts, vol. 59. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  34. Kohno, T.: Topological invariants for three manifolds using representations of the mapping class groups I. Topology 31, 203–230 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kontsevich, M.: Feynman diagrams and low-dimensional topology. In: First European Cong. Math. vol. II Prog. in Math., # 120, pp. 97–121. Birkḧauser, Berlin (1994)

    Google Scholar 

  36. Lin, X.S.: A knot invariant via representation spaces. J. Diff. Geom. 35, 337–357 (1992)

    MATH  Google Scholar 

  37. Marathe, K.: A chapter in physical mathematics: Theory of knots in the sciences. In: B. Engquist and W. Schmidt (ed.) Mathematics Unlimited - 2001 and Beyond, pp. 873–888. Springer-Verlag, Berlin (2001)

    Chapter  Google Scholar 

  38. Marathe, K.: Geometric topology and field theory on 3-manifolds. In: M. Banagl and D. Vogel (ed.) The Mathematics of Knots, Contributions in the Mathematical and Computational Sciences, Vol. 1, pp. 151–207. Springer-Verlag, Berlin (2010)

    Google Scholar 

  39. Marathe, K.B., Martucci, G., Francaviglia, M.: Gauge theory, geometry and topology. Seminario di Matematica dell’Università di Bari 262, 1–90 (1995)

    Google Scholar 

  40. Murakami, H.: Quantum SU(2)-invariants dominate Casson’s SU(2)-invariant. Math. Proc. Camb. Phil. Soc. 115, 253–281 (1993)

    Article  MathSciNet  Google Scholar 

  41. Ohtsuki, T.: Quantum Invariants. Series on Knots and Everything - vol. 29. World Scientific, Singapore (2002)

    MATH  Google Scholar 

  42. Ozsváth, P., Szabó, Z.: On knot Floer homology and the four-ball genus. Geom. Topol. 7, 225–254 (2003)

    Article  MathSciNet  Google Scholar 

  43. Piunikhin, S.: Reshetikhin–Turaev and Kontsevich-Kohno-Crane 3-manifold invariants coincide. J. Knot Theory 2, 65–95 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  44. Ray, D.B., Singer, I.M.: R-torsion and the Laplacian on Riemannian manifolds. Adv. in Math. 7, 145–210 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  45. Ray, D.B., Singer, I.M.: Analytic torsion for complex manifolds. Ann. Math. 98, 154–177 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  46. Reshetikhin, N., Turaev, V.G.: Invariants of 3-manifolds via link polynomials and quantum groups. Invent. Math. 103, 547–597 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  47. Rozansky, L., Saleur, H.: Quantum field theory for the multi-variable Alexander–Conway polynomial. Nucl. Phy. B 376, 461–509 (1992)

    Article  MathSciNet  Google Scholar 

  48. Schwarz, A.S.: The partition function of degenerate quadratic functional and Ray–Singer invariants. Lett. Math. Phys. 2, 247–252 (1978)

    Article  MATH  Google Scholar 

  49. Thurston, W.: Three-Dimensional Geometry and Topology. Princeton University, Princeton (1997)

    MATH  Google Scholar 

  50. Turaev, V.G.: The Yang–Baxter equation and invariants of link. Invent. Math. 92, 527–553 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  51. Turaev, V.G.: Torsions of 3-Dimensional Manifolds, Progress in Mathematics, vol. 208. Birkhäuser, Basel (2002)

    Book  Google Scholar 

  52. Turaev, V.G., Viro, O.Y.: State sum invariants of 3-manifolds and quantum 6j-symbols. Topology 31, 865–895 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  53. Vasiliev, V.: Cohomology of knot spaces. In: V.I. Arnold (ed.) Theory of Singularities and its Applications, Adv. Sov. Math. # 1, pp. 23–70. Amer. Math. Soc. (1990)

    Google Scholar 

  54. Verlinde, E.: Fusion rules and modular transformations in 2d conformal field theory. Nucl. Phys. B300, 360–376 (1988)

    Article  MathSciNet  Google Scholar 

  55. Witten, E.: Quantum field theory and the Jones polynomial. Comm. Math. Phys. 121, 359–399 (1989)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kishore Marathe .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer London

About this chapter

Cite this chapter

Marathe, K. (2010). Knot and Link Invariants. In: Topics in Physical Mathematics. Springer, London. https://doi.org/10.1007/978-1-84882-939-8_11

Download citation

Publish with us

Policies and ethics