Skip to main content

3-Manifold Invariants

  • Chapter
  • First Online:
Book cover Topics in Physical Mathematics
  • 1933 Accesses

Abstract

In Chapter 9 we discussed the geometry and topology of moduli spaces of gauge fields on a manifold. In recent years these moduli spaces have been extensively studied for manifolds of dimensions 2, 3, and 4 (collectively referred to as low-dimensional manifolds). This study was initiated for the 2-dimensional case in [17]. Even in this classical case, the gauge theory perspective provided fresh insights as well as new results and links with physical theories. We make only a passing reference to this case in the context of Chern–Simons theory. In this chapter, we mainly study various instanton invariants of 3-manifolds. The material of this chapter is based in part on [263]. The basic ideas come from Witten’s work on supersymmetric Morse theory. We discuss this work in Section 10.2. In Section 10.3 we consider gauge fields on a 3-dimensional manifold. The field equations are obtained from the Chern–Simons action functional and correspond to flat connections. Casson invariant is discussed in Section 10.4. In Section 10.5 we discuss the Z 8-graded instanton homology theory due to Floer and its relation to the Casson invariant. Floer’s theory was extended to arbitrary closed oriented 3-manifolds by Fukaya. When the first homology of such a manifold is torsion-free, but not necessarily zero, Fukaya also defines a class of invariants indexed by the integer s, 0 ≤ s < 3, where s is the rank of the first integral homology group of the manifold. These invariants include, in particular, the Floer homology groups in the case s = 0. The construction of these invariants is closely related to that of Donaldson polynomials of 4-manifolds, which we considered in Chapter 9. As with the definition of Donaldson polynomials a careful analysis of the singular locus (the set of reducible connections) is required in defining the Fukaya invariants. Section 10.6 is a brief introduction to an extension of Floer homology to a Z-graded homology theory, due to Fintushel and Stern, for homology 3-spheres. Floer also defined a homology theory for symplectic manifolds using Lagrangian submanifolds and used it in his proof of the Arnold conjecture. We do not discuss this theory. For general information on various Morse homologies, see, for example, [29]. The WRT invariants, which arise as a byproduct of Witten’s TQFT interpretation of the Jones polynomial are discussed in Section 10.7. Section 10.8 is devoted to a special case of the question of relating gauge theory and string theory where exact results are available. Geometric transition that is used to interpolate between these theories is also considered here. Some of the material of this chapter is taken from [263].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We would like to thank Ron Stern for confirming these corrections.

  2. 2.

    lengthy discussions about the greatest questions that fail to lead to any truth whatever.

References

  1. Aganagic, M., Mariño, M., Vafa, C.: All loop topological string amplitudes from Chern–Simons theory. Comm. Math. Phys. 247, 467–512 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Atiyah, M.F., Bott, R.: The Yang–Mills equations over Riemann surfaces. Phil. Trans. R. Soc. Lond. A 308, 523–615 (1982)

    MathSciNet  Google Scholar 

  3. Banyaga, A., Hurtubise, D.: Lectures on Morse Homology. Texts in Math. Sci., volume 29. Kluwer Acad. Publ., Dordrecht (2004)

    Book  MATH  Google Scholar 

  4. Birman, J.S.: Braids, links and the mapping class groups. Ann. Math. Studies, # 82. Princeton University Press, Princeton (1994)

    Google Scholar 

  5. Blanchet, C.: Hecke algebras, modular categories and 3-manifolds quantum invariants. Topology 39, 193–223 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Boden, H.U., Herald, C.M.: A connected sum formula for the SU(3) Casson invariant. J. Diff. Geom. 53, 443–464 (1998)

    MathSciNet  Google Scholar 

  7. Boden, H.U., Herald, C.M.: The SU(3) Casson invariant for integral homology 3-spheres. J. Diff. Geom. 50, 147–206 (1998)

    MathSciNet  MATH  Google Scholar 

  8. Boyer, S., Nicas, A.: Varieties of group representations and Casson’s invariant for rational homology 3-spheres. Trans. Amer. Math. Soc. 322, 507–522 (1990)

    MathSciNet  MATH  Google Scholar 

  9. Braam, P.J., Donaldson, S.K.: Fukaya–Floer homology and gluing formulae for polynomial invariants. In: H. Hofer, C.H. Taubes, E. Zehnder (eds.) Memorial Volume to Andreas Floer. Birkhauser, Boston (1994)

    Google Scholar 

  10. Chang, K.C.: Infinite Dimensional Morse Theory and Multiple Solution Problems. Birkhäuser, Boston (1993)

    Book  MATH  Google Scholar 

  11. Crane, L.: 2-d physics and 3-d topology. Comm. Math. Phys. 135, 615–640 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dijkgraaf, R., Witten, E.: Topological gauge theories and group cohomology. Comm. Math. Phys. 129, 393–429 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  13. Donaldson, S.K.: Floer homology groups in Yang–Mills theory. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  14. Eilenberg, S., Steenrod, N.: Foundations of Algebraic Topology. Princeton University Press, Princeton (1952)

    MATH  Google Scholar 

  15. Fintushel, R., Stern, R.: Instanton homology of Seifert fibered homology three spheres. Proc. London Math. Soc. 61, 109–137 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fintushel, R., Stern, R.: Integer graded instanton homology groups for homology three spheres. Topology 31, 589–604 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  17. Floer, A.: An instanton-invariant for 3-manifolds. Comm. Math. Phys. 118, 215–240 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  18. Floer, A.: Witten’s complex and infinite dimensional Morse theory. J. Diff. Geom. 30, 207–221 (1989)

    MathSciNet  MATH  Google Scholar 

  19. Fukaya, K.: Floer homology for oriented 3-manifolds. Advanced Studies in Pure Math. 20, 1–92 (1992)

    MathSciNet  Google Scholar 

  20. Gopakumar, R., Vafa, C.: On the gauge theory/geometry correspondence. Ad. Theor. Math. Phys. 3, 1415–1443 (1999)

    MathSciNet  MATH  Google Scholar 

  21. Guillemin, V.W., Sternberg, S.: Supersymmetry and Equivariant de Rham Theory. Springer-Verlag, Berlin (1999)

    Book  MATH  Google Scholar 

  22. Harer, J., Zagier, D.: The Euler characteristic of the moduli space of curves. Inven. Math. 85, 457–485 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hickerson, D.: A proof of the mock theta conjectures. Invent. Math. 94, 639–660 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  24. H.Taubes, C.: A simplicial model for Donaldson-Floer theory. In: H. Hofer, C.H. Taubes, E. Zehnder (eds.) Memorial Volume to Andreas Floer. Birkhauser, Boston (1995)

    Google Scholar 

  25. Kirby, R., Melvin, P.: The 3-manifold invariants of Witten and Reshetikhin–Turaev for sl(2, C). Inven. Math. 105, 473–545 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  26. Knizhnik, V.G., Zamolodchikov, A.B.: Current algebra and Wess–Zumino models in two dimensions. Nucl. Phys. B 247, 83–103 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kohno, T.: Topological invariants for three manifolds using representations of the mapping class groups I. Topology 31, 203–230 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kohno, T.: Topological invariants for three manifolds using representations of the mapping class groups II: Estimating tunnel number of knots. In: Mathematical Aspects of Conformal and Topological Field Theories and Quantum Groups, Contemporary Math., vol. 175, pp. 193–217. Amer. Math. Soc., Providence (1994)

    Chapter  Google Scholar 

  29. Kohno, T.: Conformal Field Theory and Topology. Trans. math. monographs, vol. 210. Amer. Math. Soc., Providence (2002)

    MATH  Google Scholar 

  30. Lawrence, R., Zagier, D.: Modular forms and quantum invariants of 3-manifolds. Asian J. Math. 3, 93–108 (1999)

    MathSciNet  MATH  Google Scholar 

  31. Li, J., Liu, K., Zhou, J.: Topological string partition functions as equivariant indices. Asian J. Math. 10, No. 1, 81 – 114 (2006)

    MathSciNet  MATH  Google Scholar 

  32. Lusztig, G.: Introduction to Quantum Groups. Birkhäuser, Basel (1993)

    MATH  Google Scholar 

  33. Marathe, K.: A chapter in physical mathematics: Theory of knots in the sciences. In: B. Engquist and W. Schmidt (ed.) Mathematics Unlimited - 2001 and Beyond, pp. 873–888. Springer-Verlag, Berlin (2001)

    Chapter  Google Scholar 

  34. Marathe, K.: Topological quantum field theory as topological gravity. In: B. Fauser and others (ed.) Mathematical and Physical Aspects of Quantum Gravity, pp. 189–205. Birkhauser, Berlin (2006)

    Google Scholar 

  35. Marathe, K.: Geometric topology and field theory on 3-manifolds. In: M. Banagl and D. Vogel (ed.) The Mathematics of Knots, Contributions in the Mathematical and Computational Sciences, Vol. 1, pp. 151–207. Springer-Verlag, Berlin (2010)

    Google Scholar 

  36. Milnor, J.: Morse Theory. Ann. of Math. Studies, No. 51. Princeton University Press, Princeton (1973)

    Google Scholar 

  37. Moore, G., Seiberg, N.: Classical and quantum conformal field theory. Comm. Math. Phys. 123, 177–254 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  38. Morse, M., Cairns, S.: Critical Point Theory in Global Analysis and Differential Topology. Academic Press, New York (1969)

    MATH  Google Scholar 

  39. noz, V.M.: Fukaya–Floer homology of Σ ×S 1 and applications. J. Diff. Geom. Soc. 53, 279–326 (1999)

    Google Scholar 

  40. Ohtsuki, T.: Quantum Invariants. Series on Knots and Everything - vol. 29. World Scientific, Singapore (2002)

    MATH  Google Scholar 

  41. Ozsváth, P., Szabó, Z.: On knot Floer homology and the four-ball genus. Geom. Topol. 7, 225–254 (2003)

    Article  MathSciNet  Google Scholar 

  42. Pandharipande, R.: Hodge integrals and degenerate contributions. Comm. Math. Phys. 208, 489–506 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  43. Pandharipande, R.: Three questions in Gromov–Witten theory. In: Proc. ICM 2002, Beijing, vol. II, pp. 503–512 (2002)

    Google Scholar 

  44. Piunikhin, S.: Reshetikhin–Turaev and Kontsevich-Kohno-Crane 3-manifold invariants coincide. J. Knot Theory 2, 65–95 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  45. Reshetikhin, N., Turaev, V.G.: Invariants of 3-manifolds via link polynomials and quantum groups. Invent. Math. 103, 547–597 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  46. Salamon, D.: Morse theory, the Conley index and Floer homology. Bull. London Math. Soc. 22, 113–140 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  47. Saveliev, N.: Floer homology of Brieskorn homology spheres. J. Diff. Geom. Soc. 53, 15–87 (1999)

    MathSciNet  MATH  Google Scholar 

  48. Saveliev, N.: Lectures on the Topology of 3-Manifolds. de Gruyter, Berlin (1999)

    Book  MATH  Google Scholar 

  49. Schwarz, M.: Morse Homology. Prog. in Math., vol. 111. Birkhauser, Boston (1993)

    Book  Google Scholar 

  50. Segal, G.: Two-dimensional conformal field theories and modular functors. In: Proc. IXth Int. Cong. on Mathematical Physics, pp. 22–37. Adam Hilger, Bristol (1989)

    Google Scholar 

  51. Smith, I., Thomas, R.P., Yau, S.T.: Symplectic conifold transitions. J. Diff. Geom. 62, 209–242 (2002)

    MathSciNet  MATH  Google Scholar 

  52. Taubes, C.H.: Casson’s invariant and gauge theory. J. Diff. Geom. 31, 547–599 (1990)

    MathSciNet  MATH  Google Scholar 

  53. Thurston, W.: Three-Dimensional Geometry and Topology. Princeton University, Princeton (1997)

    MATH  Google Scholar 

  54. Thurston, W.P.: A norm for the homology of 3-manifolds. Mem. Amer. Math. Soc. 59 no. 339, 99–130 (1986)

    MathSciNet  Google Scholar 

  55. Turaev, V.G.: Quantum Invariants of Knots and 3-Manifolds. Studies in Math. #18. de Gruyter, Amsterdam (1994)

    MATH  Google Scholar 

  56. Turaev, V.G., Wenzl, H.: Quantum invariants of 3-manifolds associated with classical simple Lie algebras. Int. J. Math. 4, 323–358 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  57. Walker, K.: An Extension of Casson’s Invariant. Ann. Math. Studies. Princeton University Press, Princeton (1991)

    Google Scholar 

  58. Wenzl, H.: Braids and invariants of 3-manifolds. Invent. Math. 114, 235–275 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  59. Witten, E.: Supersymmetry and Morse theory. J. Diff. Geom. 17, 661–692 (1982)

    MathSciNet  MATH  Google Scholar 

  60. Witten, E.: Topological quantum field theory. Comm. Math. Phys. 117, 353–386 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  61. Witten, E.: Quantum field theory and the Jones polynomial. Comm. Math. Phys. 121, 359–399 (1989)

    Article  MathSciNet  Google Scholar 

  62. Witten, E.: Quantization of Chern–Simons gauge theory with complex gauge group. Comm. Math. Phys. 137, 29–66 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  63. Witten, E.: Chern–Simons gauge theory as string theory. Prog. Math. 133, 637–678 (1995)

    MathSciNet  Google Scholar 

  64. Yokota, Y.: Skeins and quantum SU(N) invariants of 3-manifolds. Math. Ann. 307, 109–138 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  65. Yoshida, T.: Floer homology and splittings of manifolds. Ann. Math. 134, 277–323 (1991)

    Article  MATH  Google Scholar 

  66. Zwegers, S.P.: Mock θ-functions and real analytic modular forms. In: q-Series with Applications to Combinatorics, Number Theory, and Physics, Contemp. Math. # 291, pp. 269–277. Amer. Math. Soc., Providence (2001)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kishore Marathe .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer London

About this chapter

Cite this chapter

Marathe, K. (2010). 3-Manifold Invariants. In: Topics in Physical Mathematics. Springer, London. https://doi.org/10.1007/978-1-84882-939-8_10

Download citation

Publish with us

Policies and ethics