On Process-Algebraic Extensions of Metric Temporal Logic

  • Christoph Haase
  • Joël OuaknineEmail author
  • James Worrell


It is known that the satisfiability problem for Metric Temporal Logic (MTL) is decidable over finite timed words. In this chapter we study the satisfiability problem for extensions of this logic by various process-algebraic operators. On the negative side we show that satisfiability becomes undecidable when any of hiding, renaming, or asynchronous parallel composition are added to the logic. On the positive side we show decidability with the addition of alphabetised parallel composition and fixpoint operators. We use one-clock Timed Propositional Temporal Logic (TPTL(1)) as a technical tool for the decidability results and show that { TPTL(1)} with fixpoints provides a logical characterisation of the class of languages accepted by one-clock timed alternating automata.


  1. 1.
    Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Alur, R., Henzinger, T.A.: Real-time logics: complexity and expressiveness. Technical report, Stanford University (1990)Google Scholar
  3. 3.
    Alur, R., Henzinger, T.A.: A really temporal logic. J. ACM 41(1), 181–203 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Bouyer, P., Chevalier, F., Markey, N.: On the expressiveness of TPTL and MTL. In: Proceedings of FSTTCS, volume 3821 of Lecture Notes in Computer Science, pp. 432–443. Springer (2005)Google Scholar
  5. 5.
    Bouyer, P., Markey, N., Ouaknine, J., Worrell, J.: On expressiveness and complexity in real-time model checking. In: Proceedings of ICALP, volume 5126 of Lecture Notes in Computer Science, pp 124–135. Springer (2008)Google Scholar
  6. 6.
    Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A theory of communicating sequential processes. J. ACM 31(3), 560–599 (1984)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    D’Souza, D., Prabhakar, P.: On the expressiveness of MTL in the pointwise and continuous semantics. STTT 9(1), 1–4 (2007)CrossRefGoogle Scholar
  8. 8.
    Haase, C., Ouaknine, J., Worrell, J.: On extensions of metric temporal logic. Technical report, Oxford University Computing Laboratory (2009). Google Scholar
  9. 9.
    Henzinger, T.A.: The temporal specification and verification of real-time systems. Ph.D, thesis, Stanford University (1992)Google Scholar
  10. 0.
    Henzinger, T.A.: Its about time: real-time logics reviewed. In: Proceedings of CONCUR, volume 1466 of Lecture Notes in Computer Science, pp. 439–454 (1998)Google Scholar
  11. 1.
    Henzinger, T.A., Raskin, J.-F., Schobbens, P.-Y.: The regular real-time languages. In: Proceedings of ICALP, volume 1443 of Lecture Notes in Computer Science, pp. 580–591. Springer (1998)Google Scholar
  12. 2.
    Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall (1985)zbMATHGoogle Scholar
  13. 3.
    Koymans, R.: Specifying real-time properties with Metric Temporal Logic. Real-Time Syst. 2(4), 255–299 (1990)CrossRefGoogle Scholar
  14. 4.
    Lange, M.: Weak automata for the linear time μ-calculus. In: Proceedings of VMCAI, volume 3385 of Lecture Notes in Computer Science, pp. 267–281. Springer (2005)Google Scholar
  15. 5.
    Lasota, S., Walukiewicz, I.: Alternating timed automata. ACM Trans. Comput. Logic 9(2), 1–27 (2008)CrossRefMathSciNetGoogle Scholar
  16. 6.
    Mayer, A.J., Stockmeyer, L.J.: The complexity of PDL with interleaving. Theor. Comput. Sci. 161(1–2), 109–122 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 7.
    Milner, R.: A Calculus of Communicating Systems, volume 92 of Lecture Notes in Computer Science. Springer (1980)CrossRefzbMATHGoogle Scholar
  18. 8.
    Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-Hall., Upper Saddle River, NJ (1967)zbMATHGoogle Scholar
  19. 9.
    Ouaknine, J., Worrell, J.: On Metric Temporal Logic and Faulty turing machines. In: Proceedings of FoSSaCS, volume 3921 of Lecture Notes in Computer Science, pp. 217–230. Springer (2006)Google Scholar
  20. 0.
    Ouaknine, J., Worrell, J.: On the decidability complexity of Metric Temporal Logic over finite words. Logic. Meth. Comp. Sci. 3(1) (2007)Google Scholar
  21. 1.
    Ouaknine, J., Worrell, J.: Some recent results in Metric Temporal Logic. In: Proceedings of FORMATS, volume 5215 of Lecture Notes in Computer Science, pp. 1–13. Springer (2008)Google Scholar
  22. 2.
    Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM J. Res. Dev. 3(2), 115–125 (1959)CrossRefMathSciNetGoogle Scholar
  23. 3.
    Reed, G.M., Roscoe, A.W.: A timed model for Communicating Sequential Processes. In: Proceedings of ICALP, volume 226 of Lecture Notes in Computer Science, pp. 314–323. Springer (1986)Google Scholar
  24. 4.
    Reed, G.M., Roscoe, A.W.: Metric spaces as models for real-time concurrency. In: Proceedings of MFPS, volume 298 of Lecture Notes in Computer Science, pp. 331–343. Springer (1987)Google Scholar
  25. 5.
    Reed, G.M., Roscoe, A.W.: The timed failures-stability model for CSP. Theor. Comput. Sci. 211(1–2), 85–127 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 6.
    Sistla, A.P., Vardi, M.Y., Wolper, P.: The complementation problem for Büchi automata with applications to temporal logic (extended abstract). In: Proceedings of ICALP, volume 194 of Lecture Notes in Computer Science, pp. 465–474. Springer (1985)Google Scholar

Copyright information

© Springer London 2010

Authors and Affiliations

  • Christoph Haase
    • 1
  • Joël Ouaknine
    • 1
    Email author
  • James Worrell
    • 1
  1. 1.Oxford University Computing LaboratoryOxfordUK

Personalised recommendations