Skip to main content

Thermochemical Processes

  • Chapter
Biorefineries

Part of the book series: Green Energy and Technology ((GREEN))

  • 2366 Accesses

Abstract

Biorefineries combine the necessary technologies of the biorenewable feedstocks with those of chemical intermediates and final products. Thermochemical conversion processes include three subcategories: pyrolysis, gasification, and liquefaction. Biomass thermochemical conversion technologies such as pyrolysis and gasification are certainly not the most important options at present; combustion is responsible for over 97% of the world’s bioenergy production. Liquefaction can be accomplished directly or indirectly. Direct liquefaction involves hydrothermal liquefaction and rapid pyrolysis to produce liquid tars and oils and/or condensable organic vapors. Indirect liquefaction involves the use of catalysts to convert non-condensable, gaseous products of pyrolysis or gasification into liquid products. Fast pyrolysis utilizes biomass to produce a product that is used both as an energy source and a feedstock for chemical production. The liquid fraction of the pyrolysis products consists of two phases: an aqueous phase containing a wide variety of organo-oxygen compounds of low molecular weight and a non-aqueous phase containing insoluble organics of high molecular weight. Biomass gasification is the latest generation of biomass energy conversion processes, and is being used to improve the efficiency and to reduce the investment costs of biomass electricity generation through the use of gas turbine technology. The bio-oil obtained from the fast pyrolysis of biomass has high oxygen content. Ketones and aldehydes, carboxylic acids and esters, aliphatic and aromatic alcohols, and ethers have been detected in significant quantities. Because of the reactivity of oxygenated groups, the main problem of the oil is instability. Therefore, more study of the deoxygenation of bio-oil is needed. In recent work by Zhang and co-workers, the mechanism of hydrodeoxygenation (HDO) of bio-oil in the presence of a cobalt molybdate catalyst was studied. The main HDO reaction is:

–(CH2O)– + H2 → –(CH2)– + H2O

This is the most important route of chemical upgrading.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • An, J., Bagnell, L., Cablewski, T., Strauss, C.R., Trainor, R.W. 1997. Applications of high temperature aqueous media for synthetic organic reactions. J Org Chem 62:2505–2511.

    Article  Google Scholar 

  • Anderson, R.B. 1984. The Fischer–Tropsch synthesis. Academic, New York.

    Google Scholar 

  • Appell, H.R., Fu, Y.C., Friedman, S., Yavorsky, P.M., Wender, I. 1971. Converting organic wastes to oil. US Bureau of Mines Report of Investigation. No. 7560.

    Google Scholar 

  • Appell, H.R. 1967. In: Fuels from waste, Anderson, L., Tillman, D.A. (Eds.) Academic, New York.

    Google Scholar 

  • Babu, B.V., Chaurasia, A.S. 2003. Modeling for pyrolysis of solid particle: kinetics and heat transfer effects. Energy Convers Manage 44:2251–2275.

    Article  Google Scholar 

  • Badin, J., Kirschner, J. 1998. Biomass greens US power production. Renew Energy World 1:40-45.

    Google Scholar 

  • Balat, M. 2008. Hydrogen-rich gas production from biomass via pyrolysis and gasification processes and effects of catalyst on hydrogen yield. Energy Sources Part A 30:552–564.

    Article  Google Scholar 

  • Balat, M. 2009. New biofuel production technologies. Energy Edu Sci Technol 22:147–161.

    Google Scholar 

  • Barooah, J.N., Long, V.D. 1976. Rates of thermal decomposition of some carbonaceous materials in a fluidized bed. Fuel 55:116–120.

    Article  Google Scholar 

  • Beaumont, O. 1985. Flash pyrolysis products from beech wood. Wood Fiber Sci. 17:228–239.

    Google Scholar 

  • Byrd, A.J., Pant, K.K., Gupta, R.B. 2007. Hydrogen production from glucose using Ru/Al2 O3 catalyst in supercritical water. Ind Eng Chem Res 46:3574–3579.

    Article  Google Scholar 

  • Chornet, E., Overend, R.P.1985. Fundamentals of thermochemical biomass conversion. Elsevier Applied, New York.

    Google Scholar 

  • Demirbas, A. 1985. A new method on wood liquefaction. Chimica Acta Turcica 13:363–368.

    Google Scholar 

  • Demirbas, A. 1992. Conversion of wood to liquid products using alkaline glycerol. Fuel Sci Technol Int 10:173–184.

    Google Scholar 

  • Demirbas, A. 1998. Kinetics for non-isothermal flash pyrolysis of hazelnut shell. Biores Technol 66:247–252.

    Article  Google Scholar 

  • Demirbas, A. 1999. Properties of charcoal derived from hazelnut shell and the production of briquets using pyrolytic oil. Energy 24:141–150.

    Article  Google Scholar 

  • Demirbas, A. 2000. Mechanism of liquefaction and pyrolysis reactions of biomass. Energy Convers Manage 41:633–646.

    Article  Google Scholar 

  • Demirbas, A. 2001. Carbonization ranking of selected biomass for charcoal, liquid and gaseous products. Energy Convers Manage 42:1229–1238.

    Article  Google Scholar 

  • Demirbas, A. 2005. Hydrogen production from biomass via supercritical water extraction. Energy Sources 27:1409–1417.

    Article  Google Scholar 

  • Demirbas, A. 2007. The influence of temperature on the yields of compounds existing in bio-oils obtaining from biomass samples via pyrolysis. Fuel Proc Technol 88:591–597.

    Article  Google Scholar 

  • Demirbas, A. 2008a. Conversion of corn stover to chemicals and fuels. Energy Sources Part A 30:788–796.

    Article  Google Scholar 

  • Demirbas, A. 2008b. New liquid biofuels from vegetable oils via catalytic pyrolysis. Energy Edu Sci Technol 21:1–59.

    Google Scholar 

  • Desrosiers, R.E., Lin, R.J. 1984. A moving-boundary model of biomass pyrolysis. Solar Energy 33:187–196.

    Article  Google Scholar 

  • Dry, M.E. 2002. The Fischer–Tropsch process: 1950–2000. Catal Today 71:227–241.

    Article  Google Scholar 

  • Dry, M.E. 2004. Present and future applications of the Fischer–Tropsch process. Appl Catal A General 276:1–3.

    Article  Google Scholar 

  • Feng, W., van der Kooi, H.J., Arons, J.D.S. 2004. Biomass conversions in subcritical and supercritical water: driving force, phase equilibria, and thermodynamic analysis. Chem Eng Proc 43:1459–1467.

    Article  Google Scholar 

  • Gadhe, J.B., Gupta, R.B. 2007. Hydrogen production by methanol reforming in supercritical water: catalysis by in situ-generated copper nanoparticles. Int J Hydrogen Energy 32:2374–2381.

    Article  Google Scholar 

  • Goudriaan, F., Peferoen, D. 1990. Liquid fuels from biomass via a hydrothermal process. Chem Eng Sci 45:2729–2734.

    Article  Google Scholar 

  • Hao, X.H., Guo, L.J., Zhang, X.M., Guan, Y. 2005. Hydrogen production from catalytic gasification of cellulose in supercritical water. Chem Eng J 110:57–65.

    Article  Google Scholar 

  • Hofmann, L., Antal, M.J. 1984. Numerical simulations of the performance of solar fired flash pyrolysis reactors. Solar Energy 33:427–440.

    Article  Google Scholar 

  • Hsu, C.-C., Hixon, A.N. 1981. C1 to nC4 oxygenated compounds by promoted pyrolysis of cellulose. Ind Eng Chem Prod Res Develop 20:109–114.

    Article  Google Scholar 

  • Inoue, S., Sawayma, S., Dote, Y., Ogi, T. 1997. Behavior of nitrogen during liquefaction of dewatered sewage sludge. Biomass Bioenergy 12:473–475.

    Article  Google Scholar 

  • Itoh, S., Suzuki, A., Nakamura, T., Yokoyama, S. 1994. Production of heavy oil from sewage sludge by direct thermochemical liquefaction. In: Proceedings of the IDA and WRPC World Congress on Desalination and Water Treatment, 1994.

    Google Scholar 

  • Jager, B. 1998. In: Proceedings of the 5th Natural Gas Conversion Symposium, Taormina, Italy, 1998.

    Google Scholar 

  • Jun, K.W., Roh, H.S., Kim, K.S., Ryu, J.S., Lee, K.W. 2004. Catalytic investigation for Fischer–Tropsch synthesis from bio-mass derived syngas. Appl Catal A 259:221–226.

    Article  Google Scholar 

  • Kaparaju, P., Serrano, M., Thomsen, A.B., Kongjan, P., Angelidaki, I. 2009. Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Biores Technol 100:2562–2568.

    Article  Google Scholar 

  • Koullas, D.P., Nikolaou, N., Koukkios, E. g. 1998. Modelling non-isothermal kinetics of biomass prepyrolysis at low pressure. Biores Technol 63:261–266.

    Article  Google Scholar 

  • Kranich, W.L. 1984. Conversion of sewage sludge to oil by hydroliquefaction. EPA-600/2 84-010. Report for the U.S. Environmental Protection Agency. EPA, Cincinnati, OH.

    Google Scholar 

  • Kruse, A., Meier, D., Rimbrecht, P., Schacht, M. 2000. Gasification of pyrocatechol in supercritical water in the presence of potassium hydroxide. Ind Eng Chem Res 39:4842–2848.

    Article  Google Scholar 

  • Kucuk, M.M. 2005. Delignification of biomass using alkaline glycerol. Energy Sources 27:1245–1255.

    Article  Google Scholar 

  • Kucuk, M.M., Demirbas, A. 1993. Delignification of Ailanthus altissima and Spruce orientalis with glycerol or alkaline glycerol at atmospheric pressure. Cellulose Chem Technol 27:679–686.

    Google Scholar 

  • Kuhlmann, B., Arnett, E.M., Siskin, M. 1994. Classical organic reactions in pure superheated water. J Org Chem 59:3098–3101.

    Article  Google Scholar 

  • Midgett, J.S. 2008. Assessing a hydrothermal liquefaction process using biomass feedstocks. Master’s Thesis, Louisiana State University, Baton Rouge, LA.

    Google Scholar 

  • Minowa, T., Ogi, T., Dote, Y., Yokoyama, S. 1994. Effect of lignin content on direct liquefaction of bark. Int Chem Eng 34:428–430.

    Google Scholar 

  • Minowa, T., Zhen, F., Ogi, T. 1997. Cellulose decomposition in hot-compressed water with alkali or nickel catalyst. J Supercritical Fluids 13:253–259.

    Google Scholar 

  • Mohan, D., Pittman, C.U., Steele, P.H. 2006. Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels 20:848–889.

    Article  Google Scholar 

  • Molten, P.M., Demmitt, T.F., Donovan, J.M., Miller, R.K. 1983. Mechanism of conversion of cellulose wastes to liquid in alkaline solution. In: Energy from biomass and wastes. Klass, D.L. (Ed.) Institute of Gas Technology, Chicago.

    Google Scholar 

  • Ogi, T., Yokoyama, S., Koguchi, K. 1985. Direct liquefaction of wood by alkali and alkaline earth salt in an aqueous phase. Chem Lett 8:1199–1202.

    Article  Google Scholar 

  • Ogi, T., Yokoyama S. 1993. Liquid fuel production from woody biomass by direct liquefaction. Sekiyu Gakkaishi 36:73–84.

    Google Scholar 

  • Overend, R.P. 1998. Biomass gasification: a growing business. Renew Energy World 1:59–63.

    Google Scholar 

  • Peterson, A.A., Vogel, F., Lachance, R.P., Froling, M., Antal, M.J., Tester, J.W. 2008. Thermochemical biofuel production in hydrothermal media: a review of sub- and supercritical water technologies. Energy Environ Sci 1:32–65.

    Article  Google Scholar 

  • Prins, M.J., Ptasinski, K.J., Janssen, F.J.J.G. 2004. Exergetic optimisation of a production process of Fischer–Tropsch fuels from biomass. Fuel Proc Technol 86:375–389.

    Article  Google Scholar 

  • Riedel, T., Claeys, M., Schulz, H., Schaub, G., Nam, S.S., Jun, K.W., Choi, M.J., Kishan, G., Lee, K.W. 1999. Comparative study of FTS with H2/CO and H2/CO2 syngas using Fe and Co catalysts. Appl Cat A 186:201–213.

    Article  Google Scholar 

  • Russell, J.A., Miller, R.K., Molten, P.M. 1983. In: Biomass, Coombs, J., Hall, D.O. (Eds.) Biomass 3:43–57.

    Google Scholar 

  • Sang, O.Y., Twaiq, F., Zakaria, R., Mohamed, A., Bhatia, S. 2003. Biofuel production from catalytic cracking of palm oil. Energy Sources 25:859–869.

    Article  Google Scholar 

  • Sasaki, M., Kabyemela, B.M., Malaluan, R.M., Hirose, S., Takeda, N., Adschiri, T., Arai. K. 1998. Cellulose hydrolysis in subcritical and supercritical water. J Supercritical Fluids 13:261–268.

    Article  Google Scholar 

  • Scott, D.S., Paterson, L., Piskorz, J., Radlein, D. 2000. Pretreatment of poplar wood for fast pyrolysis: rate of cation removal. J Anal Appl Pyrolysis 57:169–176.

    Article  Google Scholar 

  • Schulz, H. 1999. Short history and present trends of FT synthesis. Appl Catal A General 186:1–16.

    Article  Google Scholar 

  • Stamm, A.J. 1956. Thermal degradation of wood and cellulose. Ind Eng Chem 48:413–417.

    Article  Google Scholar 

  • Stelmachowski, M., Nowicki, L. 2003. Fuel from the synthesis gas: the role of process engineering. Appl Energy 74:85–93.

    Article  Google Scholar 

  • Stevens, D.J. 2001. Hot gas conditioning: recent progress with larger-scale biomass gasification systems. National Renewable Energy Laboratory, NREL/SR-510-29952. National Renewable Energy Laboratory, Golden, CO.

    Google Scholar 

  • Susta, M.R., Luby, P., Mat, S.B. 2003. Biomass energy utilization and environment protection commercial reality and outlook, Power Gen Asia. http://www.powergeneration.siemens.com/ download/pool/industrialheatpower_02.pdf. Accessed 2009.

    Google Scholar 

  • Suzuki, A., Yokoyama, S., Murakami, M., Ogi, T., Koguchi, K. 1986. New treatment of sewage sludge by direct thermochemical liquefaction. Chem Lett 9:1425–1428.

    Article  Google Scholar 

  • Timell, T.E. 1967. Recent progress in the chemistry of wood. Hemicelluloses. Wood Sci Technol 1:45–70.

    Article  Google Scholar 

  • Tran, D.Q., Charanjit, R. 1978. A kinetic model for pyrolysis of Douglas fir bark. Fuel 57:293–298.

    Article  Google Scholar 

  • Vosloo, A.C. 2001. Fischer–Tropsch: a futuristic view. Fuel Proc Technol 71:149–155.

    Article  Google Scholar 

  • Wang, D., Czernik, S., Chornet, E. 1998. Production of hydrogen from biomass by catalytic steam reforming of fast pyrolysis oils. Energy Fuels 12:19–24.

    Article  Google Scholar 

  • Wang, Y.N., Ma, W.P., Lu, Y.J., Yang, J., Xu, Y.Y., Xiang, H.W., Li, Y.W., Zhao, Y.L., Zhang, B.J. 2003. Kinetics modeling of FT synthesis over an industrial Fe-Cu-K catalyst. Fuel 82:195–213.

    Article  Google Scholar 

  • Warnecke, R. 2000. Gasification of biomass: comparison of fixed bed and fluidized bed gasifier. Biomass Bioenergy 18:489–497.

    Article  Google Scholar 

  • Zhang, Y. 2008. Reviving the carbohydrate economy via multi-product lignocellulose biorefineries. J Ind Microbiol Biotechnol 35:367–375.

    Article  Google Scholar 

  • Zhang, S.P., Yan, Y.J., Ren, J.W., Li, T.C. 2003. Study of hydrodeoxygenation of bio-oil from the fast pyrolysis of biomass. Energy Sources 25:57–65.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Limited

About this chapter

Cite this chapter

(2010). Thermochemical Processes. In: Biorefineries. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-84882-721-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-721-9_6

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-720-2

  • Online ISBN: 978-1-84882-721-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics