Advertisement

Clinical Experience of Cord Blood Autologous Transfusion

  • Shigeharu Hosono
Chapter

Abstract

With rapid advances in perinatal and neonatal intensive care medicine including surgical intervention over the last 2 decades, mortality rate of infants born prematurely or with surgical disease has changed dramatically. Extremely low birth weight infants remain the population at the greatest risk of repeated red blood cell transfusions after introduction of recombinant human erythropoietin (rHu-Epo) therapy.

Keywords

Cord Blood Premature Infant Umbilical Cord Intraventricular Hemorrhage Recombinant Human Erythropoietin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Maier RF, Obladen M, Müller-Hansen I, et al. Early treatment with erythropoietin beta ameliorates anemia and reduces transfusion requirements in infants with birth weights below 1000 g. J Pediatr. 2002;141:8-15.CrossRefPubMedGoogle Scholar
  2. 2.
    Hosono S, Mugishima H, Shimada M, et al. Prediction of transfusions in extremely low-birthweight infants in the erythropoietin era. Pediatr Int. 2006;48:572-576.CrossRefPubMedGoogle Scholar
  3. 3.
    Luban NL. Prevention of transfusion-associated graft-­versus-host disease by inactivation of T cells in platelet ­components. Semin Hematol. 2001;38:34-45.CrossRefPubMedGoogle Scholar
  4. 4.
    Schreiber GB, Busch MP, Kleinman SH, et al. The risk of trasnsfusion-transmitted viral infections. N Engl J Med. 1996;334:1685-1690.CrossRefPubMedGoogle Scholar
  5. 5.
    Imura K, Kawahara H, Kitayama Y, et al. Usefulness of cord-blood harvesting for autologus transfusion in surgical newborns with antenatal diagnosis of congenital anomalies. J Pediatr Surg. 2001;36:851-854.CrossRefPubMedGoogle Scholar
  6. 6.
    Taguchi T, Suita S, Nakamura M, et al. The efficacy of autologous cord-blood transfusions in neonatal surgical patients. J Pediatr Surg. 2003;38(4):604-607.CrossRefPubMedGoogle Scholar
  7. 7.
    Hosono S, Mugishima H, Nakano Y, et al. Autologous cord blood transfusion in an infant with a huge sacrococcygeal teratoma. J Perinat Med. 2004;32(2):187-189.CrossRefPubMedGoogle Scholar
  8. 8.
    Ballin A, Arbel E, Kenet G, et al. Autologous umbilical cord blood transfusion. Arch Dis Child Fetal Neonatal Ed. 1995;73:F181-F183.CrossRefPubMedGoogle Scholar
  9. 9.
    Eichler H, Schaible T, Richter E, et al. Cord blood as a source of autologous RBCs for transfusion to preterm infants. Transfusion. 2000;40:1111-1117.CrossRefPubMedGoogle Scholar
  10. 10.
    Brune T, Garritsen H, Witteler R, et al. Autologous placental blood transfusion for the therapy of anaemic neonates. Biol Neonate. 2002;81:236-243.CrossRefPubMedGoogle Scholar
  11. 11.
    Kinmond S, Aitchison TC, Holland BM, Jones JG, Turner TL, Wardrop CA. Umbilical cord clamping and preterm infants: a randomised trial. BMJ. 1993;306:172-175.CrossRefPubMedGoogle Scholar
  12. 12.
    McDonnell M, Henderson-Smart DJ. Delayed umbilical cord clamping in preterm infants: a feasibility study. J Paediatr Child Health. 1997;33:308-310.CrossRefPubMedGoogle Scholar
  13. 13.
    Ibrahim HM, Krouskop RW, Lewis DF, Dhanireddy R. Placental transfusion: umbilical cord clamping and preterm infants. J Perinatol. 2000;20(6):351-354.CrossRefPubMedGoogle Scholar
  14. 14.
    Rabe H, Wacker A, Hülskamp G, et al. A randomised controlled trial of delayed cord clamping in very low birth weight preterm infants. Eur J Pediatr. 2000;159(10):775-777.CrossRefPubMedGoogle Scholar
  15. 15.
    Strauss RG, Mock DM, Johnson K, et al. Circulating RBC volume, measured with biotinylated RBCs, is superior to the Hct to document the hematologic effects of delayed versus immediate umbilical cord clamping in preterm neonates. Transfusion. 2003;43(8):1168-1172.CrossRefPubMedGoogle Scholar
  16. 16.
    Mercer JS, McGrath MM, Hensman A, Silver H, Oh W. Immediate and delayed cord clamping in infants born between 24 and 32 weeks: a pilot randomized controlled trial. J Perinatol. 2003;23(6):466-472.CrossRefPubMedGoogle Scholar
  17. 17.
    Strauss RG, Mock DM, Johnson KJ, et al. A randomized clinical trial comparing immediate versus delayed clamping of the umbilical cord in preterm infants: short-term clinical and laboratory endpoints. Transfusion. 2008;48(4):658-665. Epub Jan 10, 2008.CrossRefPubMedGoogle Scholar
  18. 18.
    Ultee CA, van der Deure J, Swart J, Lasham C, van Baar AL. Delayed cord clamping in preterm infants delivered at 34 36 weeks’ gestation: a randomised controlled trial. Arch Dis Child Fetal Neonatal Ed. 2008;93(1):F20-F23.CrossRefPubMedGoogle Scholar
  19. 19.
    Geethanath RM, Ramji S, Thirupuram S, Rao YN. Effect of timing of cord clamping on the iron status of infants at 3 months. Indian Pediatr. 1997;34(2):103-106.PubMedGoogle Scholar
  20. 20.
    Gupta R, Ramji S. Effect of delayed cord clamping on iron stores in infants born to anemic mothers: a randomized controlled trial. Indian Pediatr. 2002;39(2):130-135.PubMedGoogle Scholar
  21. 21.
    Chaparro CM, Neufeld LM, Tena Alavez G, Eguia-Líz Cedillo R, Dewey KG. Effect of timing of umbilical cord clamping on iron status in Mexican infants: a randomised controlled trial. Lancet. 2006;367(9527):1997-2004.CrossRefPubMedGoogle Scholar
  22. 22.
    Ceriani Cernadas JM, Carroli G, Pellegrini L, et al. The effect of timing of cord clamping on neonatal venous hematocrit values and clinical outcome at term: a randomized, controlled trial. Pediatrics. 2006;117(4):e779-e786.CrossRefPubMedGoogle Scholar
  23. 23.
    Hosono S, Mugishima H, Fujita H, et al. Umbilical cord milking reduces the need for red cell transfusions and improves neonatal adaptation in infants born at less than 29 weeks’ gestation: a randomised controlled trial. Arch Dis Child Fetal Neonatal Ed. 2008;93:F14-F19.CrossRefPubMedGoogle Scholar
  24. 24.
    Goodall JR, Andersen FO, Altimas GT, MacPhall FL. An inexhaustible source of blood for transfusion and its preservation. Surg Gynecol Obstet. 1938;66:176.Google Scholar
  25. 25.
    Halbrecht J. Fresh and stored placental blood. Lancet. 1939;2:1263-1265.CrossRefGoogle Scholar
  26. 26.
    Paxson CL Jr. Collection and use of autologous fetal blood. Am J Obstet Gynecol. 1979;134(6):708-710.PubMedGoogle Scholar
  27. 27.
    Brandes JM, Roth EF Jr, Berk PD, et al. Collection and ­preservation of human placental blood. Transfusion. 1983;23(4):325-327.CrossRefPubMedGoogle Scholar
  28. 28.
    Horn S, Mazor D, Zmora E, Meyerstein N. Storage-induced changes in human newborn red cells. Transfusion. 1987;27(5):411-414.CrossRefPubMedGoogle Scholar
  29. 29.
    Anderson S, Fangman J, Wager G, Uden D. Retrieval of ­placental blood from the umbilical vein to determine volume, sterility, and presence of clot formation. Am J Dis Child. 1992;146(1):36-39.PubMedGoogle Scholar
  30. 30.
    Bifano EM, Dracker RA, Lorah K, Palit A. Collection and 28-day storage of human placental blood. Pediatr Res. 1994;36(1 Pt 1):90-94.PubMedGoogle Scholar
  31. 31.
    Garritsen HS, Brune T, Louwen F, et al. Autologous red cells derived from cord blood: collection, preparation, storage and quality controls with optimal additive storage medium (Sag-mannitol). Transfus Med. 2003;13(5):303-310.CrossRefPubMedGoogle Scholar
  32. 32.
    Brune T, Garritsen H, Hentschel R, Louwen F, Harms E, Jorch G. Efficacy, recovery, and safety of RBCs from autologous placental blood: clinical experience in 52 newborns. Transfusion. 2003;43(9):1210-1216.CrossRefPubMedGoogle Scholar
  33. 33.
    Yao AC, Lind J. Placental Transfusion. A Clinical and Physiological Study. Springfield: Charles C. Thomas; 1982.Google Scholar
  34. 34.
    Aladangady N, McHugh S, Aitchison TC, Wardrop CAJ, Holland BM. Infants’ blood volume in a controlled trial of placental transfusion at preterm delivery. Pediatrics. 2006;117:93-98.CrossRefPubMedGoogle Scholar
  35. 35.
    Rabe H, Reynolds G, Diaz-Rossello J. A systematic review and meta-analysis of a brief delay in clamping the umbilical cord of preterm infants. Neonatology. 2008;93:138-144.CrossRefPubMedGoogle Scholar
  36. 36.
    Maier RF, Obladen M, Kattner E, et al. High-versus low-dose erythropoietin in extremely low birth weight infants. The European Multicenter rhEPO Study Group. J Pediatr. 1998;132:866-870.CrossRefPubMedGoogle Scholar
  37. 37.
    Hosono S, Mugishima H, Shimada M, et al. Prediction of transfusions in extremely low-birthweight infants in the erythropoietin era. Pediatr Int. 2006;48:572-576.CrossRefPubMedGoogle Scholar
  38. 38.
    Maier RF, Obladen M, Müller-Hansen I, et al. Early treatment with erythropoietin beta ameliorates anemia and reduces transfusion requirements in infants with birth weights below 1000 g. J Pediatr. 2002;141:8-15.CrossRefPubMedGoogle Scholar
  39. 39.
    Paul DA, Pearlman SA, Leef KH, Stefano JL. Predicting red blood cell transfusions in very low birth weight infants based on clinical risk factors. Del Med J. 1997;69:555-561.PubMedGoogle Scholar
  40. 40.
    DeMarsh QB, Windle WF, Alt HL. Blood volume of newborn infant in relation to early and late clamping of umbilical cord. Am J Dis Child. 1942;63:1123.Google Scholar
  41. 41.
    Usher R, Shephard M, Lind J. The blood volume of the newborn infant and placental transfusion. Acta Paediatr. 1963;52:497-512.CrossRefPubMedGoogle Scholar
  42. 42.
    Moss AJ, Monset-Couchard M. Placental transfusion: early versus late clamping of the umbilical cord. Pediatrics. 1967;40:109-126.PubMedGoogle Scholar
  43. 43.
    Hutton EK, Hassan ES. Late vs early clamping of the umbilical cord in full-term neonates: systematic review and meta-analysis of controlled trials. JAMA. 2007;21(297):1241-1252.CrossRefGoogle Scholar
  44. 44.
    Rabe H, Reynolds G, Diaz-Rossello J. Early versus delayed umbilical cord clamping in preterm infants. Cochrane Database Syst Rev. 2004;18(4):CD003248.Google Scholar
  45. 45.
    Linderkamp O. Placental transfusion: determinants and effects. Clin Perinatol. 1982;9:559-592.PubMedGoogle Scholar
  46. 46.
    Yao AC, Moinian M, Lind J. Distribution of blood between infant and placenta after birth. Lancet. 1969;2(7626):871-873.CrossRefPubMedGoogle Scholar
  47. 47.
    Saigal S, O’Neill A, Surainder Y, Chua LB, Usher R. Placental transfusion and hyperbilirubinemia in the premature. Pediatrics. 1972;49:406-419.PubMedGoogle Scholar
  48. 48.
    Aladangady N, McHugh S, Aitchison TC, Wardrop CA, Holland BM. Infants’ blood volume in a controlled trial of placental transfusion at preterm delivery. Pediatrics. 2006;117:93-98.CrossRefPubMedGoogle Scholar
  49. 49.
    Lind J. Physiological adaptation to the placental transfusion: the eleventh blackader lecture. Can Med Assoc J. 1965;93:1091-1100.PubMedGoogle Scholar
  50. 50.
    Baenziger O, Stolkin F, Keel M, et al. The influence of the timing of cord clamping on postnatal cerebral oxygenation in preterm neonates: a randomized, controlled trial. Pediatrics. 2007;119:455-459.CrossRefPubMedGoogle Scholar
  51. 51.
    Hofmeyr GJ, Bolton KD, Bowen DC, Govan JJ. Periventricular/intraventricular haemorrhage and umbilical cord clamping. Findings and hypothesis. S Afr Med J. 1988;23(73):104-106.Google Scholar
  52. 52.
    Mercer JS, Vohr BR, McGrath MM, Padbury JF, Wallach M, Oh W. Delayed cord clamping in very preterm infants reduces the incidence of intraventricular hemorrhage and late-onset sepsis: a randomized, controlled trial. Pediatrics. 2006;117:1235-1242.CrossRefPubMedGoogle Scholar
  53. 53.
    Haneline LS, Marshall KP, Clapp DW. The highest concentration of primitive hematopoietic progenitor cells in cord blood is found in extremely premature infants. Pediatr Res. 1996;39:820-825.CrossRefPubMedGoogle Scholar
  54. 54.
    ACC/SCN. Preventing and treating anemia. In: Allen LH, Gillespie SR, eds. What Works? A Review of the Efficacy and Effectiveness of Nutrition Interventions. Geneva: ACC/SCN in collaboration with the Asian Development Bank, Manila; 2001:43-54.Google Scholar
  55. 55.
    Grantham-McGregor S, Ani C. A review of studies on the effect of iron deficiency on cognitive development in children. J Nutr. 2001;131:649S-666S.PubMedGoogle Scholar
  56. 56.
    Chaparro CM, Neufeld LM, Tena Alavez G, Eguia-Líz Cedillo R, Dewey KG. Effect of timing of umbilical cord clamping on iron status in Mexican infants: a randomised controlled trial. Lancet. 2006;367:1997-2004.CrossRefPubMedGoogle Scholar
  57. 57.
    Hofmeyr GJ, Gobetz L, Bex PJ, Van der Griendt M, Nikodem C, Skapinker R, Delahunt T. Periventricular/­intraventricular hemorrhage following early and delayed umbilical cord clamping. A randomized controlled trial. Online J Curr Clin Trials. 1993;Doc No 110.Google Scholar
  58. 58.
    Nelson NM, Enkin MW, Saigal S, Bennett KJ, Milner R, Sackett DL. A randomized clinical trial of the Leboyer approach to childbirth. N Engl J Med. 1980;302:655-660.CrossRefPubMedGoogle Scholar
  59. 59.
    Ceriani Cernadas JM, Carroli G, Pellegrini L, et al. The effect of timing of cord clamping on neonatal venous hematocrit values and clinical outcome at term: a randomized, controlled trial. Pediatrics. 2006;117:e779-e786.CrossRefPubMedGoogle Scholar
  60. 60.
    Emhamed MO, van Rheenen P, Brabin BJ. The early effects of delayed cord clamping in term infants born to Libyan mothers. Trop Doct. 2004;34:218-222.PubMedGoogle Scholar
  61. 61.
    van Rheenen PF, Gruschke S, Brabin BJ. Delayed umbilical cord clamping for reducing anaemia in low birthweight infants: implications for developing countries. Ann Trop Paediatr. 2006;26:157-167.CrossRefPubMedGoogle Scholar
  62. 62.
    Nelle M, Kraus M, Bastert G, Linderkamp O. Effects of Leboyer childbirth on left- and right systolic time intervals in healthy term neonates. J Perinat Med. 1996;24:513-520.CrossRefPubMedGoogle Scholar
  63. 63.
    Linderkamp O, Nelle M, Kraus M, Zilow EP. The effect of early and late cord-clamping on blood viscosity and other hemorheological parameters in full-term neonates. Acta Paediatr. 1992;81:745-750.CrossRefPubMedGoogle Scholar
  64. 64.
    Yao AC, Lind J, Vuorenkoski V. Expiratory grunting in the late clamped normal neonate. Pediatrics. 1971;48:865-870.PubMedGoogle Scholar
  65. 65.
    Beck AC. How can the obstetricians aid in reducing the mortality of prematurely born infants? Am J Obstet Gynecol. 1941;42:355-364.Google Scholar
  66. 66.
    Siddall RS, Crissey RR, Knapp WL. Effect on Cesarean section babies of stripping or milking of the umbilical cord. Am J Obst Gynecol. 1952;63:1059-1064.Google Scholar
  67. 67.
    Siddall RS, Richardson RP. Milking or stripping the umbilical cord; effect on vaginally delivered babies. Obstet Gynecol. 1953;1:230-233.PubMedGoogle Scholar
  68. 68.
    Colozzi AE. Clamping of the umbilical cord – its effect on the placental transfusion. N Engl J Med. 1954;250:629-632.CrossRefPubMedGoogle Scholar
  69. 69.
    McCausland AM, Holmes F, Schumann WR. Management of cord and placental blood and its effect upon the newborn. Part II. West J Surg Obstet Gynecol. 1950;58:591-608.PubMedGoogle Scholar
  70. 70.
    Luchtman-Jones L, Schwartz AL, Wilson DV. The blood and hematopoietic system PP1287-1356. In: Marchin RJ, Fanaroff AA, Walsh MC, eds. Fanaroff and Martin’s Neonatal-Perinatal Medicine: Disease of the Fetus and Infant. 8th ed. Amsterdam: Elsevier Mosby; 2006: Chap. 44.Google Scholar
  71. 71.
    Goldberg RN, Chung D, Goldman SL, Bancalari E. The association of rapid volume expansion and intraventricular hemorrhage in the preterm infant. J Pediatr. 1980;96:1060-1063.CrossRefPubMedGoogle Scholar
  72. 72.
    Fujimura M, Salisbury DM, Robinson RO, et al. Clinical events relating to intraventricular haemorrhage in the newborn. Arch Dis Child. 1979;54:409-414.CrossRefPubMedGoogle Scholar
  73. 73.
    Miall-Allen VM, de Vries LS, Dubowitz LM, Whitelaw AG. Blood pressure fluctuation and intraventricular hemorrhage in the preterm infant of less than 31 weeks’ gestation. Pediatrics. 1989;83:657-661.PubMedGoogle Scholar
  74. 74.
    Funato M, Tamai H, Noma K, et al. Clinical events in association with timing of intraventricular hemorrhage in preterm infants. J Pediatr. 1992;121:614-619.CrossRefPubMedGoogle Scholar
  75. 75.
    Tucker J, McGuire W. Epidemiology of preterm birth. BMJ. 2004;329:675-678.CrossRefPubMedGoogle Scholar
  76. 76.
    Hutchon DJ. Epidemiology of preterm birth: delayed cord clamping used to be taught and practised. BMJ. 2004;329:1287. Author reply.CrossRefPubMedGoogle Scholar

Copyright information

© Springer London 2011

Authors and Affiliations

  • Shigeharu Hosono
    • 1
  1. 1.Department of Pediatrics and Child HealthNihon University School of MedicineTokyoJapan

Personalised recommendations