Use of Cord Blood in Regenerative Medicine

  • David T. HarrisEmail author


It is estimated that up to 128 million individuals might benefit from regenerative medicine therapy, or almost one in three individuals in the USA. Multipotent stem cells are easily available in large numbers in umbilical cord blood (CB), and may be the best alternative to embryonic stem (ES) cells. CB stem cells are capable of giving rise to hematopoietic, epithelial, endothelial, and neural tissues both in vitro and in vivo. Thus, CB stem cells are amenable to treat a wide variety of diseases including cardiovascular, ophthalmic, orthopedic, neurological, and endocrine diseases. Examples of these usages currently in clinical trials include applications that affect the nervous and endocrine system, including cerebral palsy and type I diabetes. The numbers of such individuals affected with each of these diseases are estimated to be 10,000 annually. A summary of the initial beneficial results from such clinical trials using autologous CB stem cells will be presented.


Stem Cell Traumatic Brain Injury Spinal Cord Injury Cord Blood Cerebral Palsy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Cord blood


Cerebral palsy


Type I diabetes.



The funding by The Jerome Lejeune Foundation is gratefully acknowledged.


  1. 1.
    Broxmeyer HE, Gluckman E, Auerbach A, et al. Human umbilical cord blood: a clinically useful source of transplantable hematopoietic stem/progenitor cells. Int J Cell Cloning. 1990;8(supp 1):76.CrossRefPubMedGoogle Scholar
  2. 2.
    Gluckman E, Broxmeyer HE, Auerbach A, et al. Hematopoietic reconstitution in a patient with Fanconi’s anemia by means of umbilical cord blood from an HLA-identical sibling. N Eng J Med. 1989;321:1174-1178.CrossRefGoogle Scholar
  3. 3.
    Gluckman E. Stem cell harvesting from cord blood: a new perspective. In: Henon PR, Wunder EW, eds. Peripheral Blood Stem Cell Autografts. Berlin: Springer; 1990.Google Scholar
  4. 4.
    Broxmeyer HE, Kurtzburg J, Gluckman E, et al. Umbilical cord blood hematopoietic stem and repopulating cells in human clinical transplantation: an expanded role for cord blood transplantation. Blood Cells. 1991;17:330-337.Google Scholar
  5. 5.
    Broxmeyer HE, Kurtzburg J, Gluckman E, et al. Umbilical cord blood hematopoietic stem and repopulating cells in human clinical transplantation. Blood Cells. 1991;17:313-330.PubMedGoogle Scholar
  6. 6.
    Broxmeyer HE, Douglas GW, Hangoc G, et al. Human umbilical cord blood as a potential source of transplantable hematopoietic stem/progenitor cells. Proc Natl Acad Sci USA. 1989;86:3828-3832.CrossRefPubMedGoogle Scholar
  7. 7.
    Vilmer E, Sterkers G, Rahimy C, et al. HLA-mismatched cord blood transplantation in a patient with advanced leukemia. Transplantation. 1992;53:1155-1157.CrossRefPubMedGoogle Scholar
  8. 8.
    Wagner JE, Kernan NA, Steinbuch M, et al. Allogeneic sibling umbilical cord blood transplantation in children with malignant and nonmalignant disease. Lancet. 1995;346:214-219.CrossRefPubMedGoogle Scholar
  9. 9.
    Rubinstein P, Rosenfield RE, Adamson JW, Stevens CE. Stored placental blood for unrelated bone marrow reconstitution. Blood. 1993;81:1679-1690.PubMedGoogle Scholar
  10. 10.
    Loper K. AABB Advancements in Cord Blood Transplantation. Available at: Accessed October 15, 2008.
  11. 11.
    McGuckin C, Forraz N, Baradez MO, et al. Production of stem cells with embryonic characteristics from human umbilical cord blood. Cell Prolif. 2005;38:245-255.CrossRefPubMedGoogle Scholar
  12. 12.
    McGuckin CP, Forraz N, Allouard Q, Pettengell R. Umbilical cord blood stem cells can expand hematopoietic and neuroglial progenitors in vitro. Exp Cell Res. 2004;295:350-359.CrossRefPubMedGoogle Scholar
  13. 13.
    Rogers I, Yamanaka N, Bielecki R, et al. Identification and analysis of in vitro cultured CD45-positive cells capable of multi-lineage differentiation. Exp Cell Res. 2007;313:1839-1852.CrossRefPubMedGoogle Scholar
  14. 14.
    Kucia M, Halasa M, Wysoczynski M, et al. Morphological and molecular characterization of novel population of CXCR4+ SSEA-4+ Oct-4+ very small embryonic-like cells purified from human umbilical cord blood-preliminary report. Leukemia. 2007;21:297-303.CrossRefPubMedGoogle Scholar
  15. 15.
    Harris DT, He X, Badowski M, Nicols JC. In: Levicar N, Habib NA, Dimarakis I, Gordon MY, eds. Regenerative Medicine of the Eye: A Short Review. Stem Cell Repair & Regeneration. Vol. 3. London: Imperial College Press; 2008:211–225.Google Scholar
  16. 16.
    Harris DT, Badowski M, Ahmad N, Gaballa M. The potential of cord blood stem cells for use in regenerative medicine. Expert Opin Biol Ther. 2007;7(9):1311-1322.CrossRefPubMedGoogle Scholar
  17. 17.
    Harris DT, Rogers I. Umbilical cord blood: a unique source of pluripotent stem cells for regenerative medicine. Curr Stem Cell Res Ther. 2007;2:301-309.CrossRefPubMedGoogle Scholar
  18. 18.
    Furfaro MEK, Gaballa MA. Do adult stem cells ameliorate the damaged myocardium? Is human cord blood a potential source of stem cells? Curr Vasc Pharm. 2007;5:27-44.CrossRefGoogle Scholar
  19. 19.
    Sunkomat JNE, Goldman S, Harris DT, et al. Cord blood-derived MNCs delivered intracoronary contribute differently to vascularization compared to CD34+ cells in the rat model of acute ischemia. J Mol Cell Cardiol. 2007;42(6 Suppl 1):S97.CrossRefGoogle Scholar
  20. 20.
    Botta R, Gao E, Stassi G, et al. Heart infarct in NOD-SCID mice: therapeutic vasculogenesis by transplantation of human CD34+ cells ad low dose CD34 + KDR + cells. FASEB J. 2004;18:1392-1394.PubMedGoogle Scholar
  21. 21.
    Henning RJ, Abu-Ali H, Balis JU, et al. Human umbilical cord blood mononuclear cells for treatment of acute myocardial infarction. Cell Transplant. 2004;13:729-739.CrossRefPubMedGoogle Scholar
  22. 22.
    Chen HK, Hung HF, Shyu KG, et al. Combined cord blood cells and gene therapy enhances angiogenesis and improves cardiac performance in mouse after acute myocardial infarction. Eur J Clin Invest. 2005;35:677-686.CrossRefPubMedGoogle Scholar
  23. 23.
    Hirata Y, Sata M, Motomura N, et al. Human umbilical cord blood cells improve cardiac function after myocardial infarction. Biochem Biophys Res Commun. 2005;327:609-614.CrossRefPubMedGoogle Scholar
  24. 24.
    Kim BO, Tian H, Prasongsukarn K, et al. Cell transplantation improves ventricular function after a myocardial infarction: a preclinical study of human unrestricted somatic stem cells in a porcine model. Circulation. 2006;112 (9 Suppl):196-204.Google Scholar
  25. 25.
    Leor J, Guetta E, Feinberg MS, et al. Human umbilical cord blood-derived CD133+ cells enhance function and repair of the infracted myocardium. Stem Cells. 2006;24(3):772-780.CrossRefPubMedGoogle Scholar
  26. 26.
    Ma N, Stamm C, Kaminski A, et al. Human cord blood cells induce angiogenesis following myocardial infarction in NOD/scid mice. Cardiovasc Res. 2005;66:45-54.CrossRefPubMedGoogle Scholar
  27. 27.
    Amado LC, Saliaris AP, Schuleri KH, et al. Cardiac repair with intramyocardial injection of mesenchymal stem cells after myocardial infarction. Proc Natl Acad Sci USA. 2005;102:11474-11479.CrossRefPubMedGoogle Scholar
  28. 28.
    Bonnano G, Mariotti A, Procoli A, et al. Human cord blood CD133+ cells imunoselected by a clinical-grade apparatus differentiate in vitro into endothelial- and cardiomyocyte-like cells. Transfusion. 2007;47:280-289.CrossRefGoogle Scholar
  29. 29.
    Schmidt D, Breymann Y, Weber A, et al. Umbilical cord blood derived endothelial progenitor cells for tissue engineering of vascular grafts. Soc Thorac Surg. 2004;78:2094-2098.CrossRefGoogle Scholar
  30. 30.
    Murga M, Yao L, Tosato G. Derivation of endothelial cells from CD34 umbilical cord blood. Stem Cells. 2004;22:385-395.CrossRefPubMedGoogle Scholar
  31. 31.
    Hoerstrup SP, Kadner A, Breymann CI, et al. Living, autologous pulmonary artery conduits tissue engineered from human umbilical cord cells. Ann Thorac Surg. 2002;74:46-52.CrossRefPubMedGoogle Scholar
  32. 32.
    Schmidt D, Mol A, Neuenschwander S, et al. Living patches engineered from human umbilical cord derived fibroblasts and endothelial progenitor cells. Eur J Cardiothorac Surg. 2005;27:795-800.CrossRefPubMedGoogle Scholar
  33. 33.
    Murohara T, Ikeda H, Duan A, et al. Transplanted cord blood-derived endothelial precursor cells augment postnatal neovascularization. J Clin Invest. 2000;105:1527-1536.CrossRefPubMedGoogle Scholar
  34. 34.
    Goldberg JL, Laughlin MJ. UC blood hematopoietic stem cells and therapeutic angiogenesis. Cytotherapy. 2007;9(1):4-13.CrossRefPubMedGoogle Scholar
  35. 35.
    Nieda M, Nicol A, Denning-Kendall P, et al. Endothelial cell precursors are normal components of human umbilical cord blood. Br J Hematol. 1997;98:775-777.CrossRefGoogle Scholar
  36. 36.
    Murohara T. Therapeutic vasculogenesis using human cord blood-derived endothelial progenitors. Trends Cardiovasc Med. 2001;11:303-307.CrossRefPubMedGoogle Scholar
  37. 37.
    Ikeda Y, Fukada N, Wada M, et al. Development of angiogenic cell and gene therapy by transplantation of umbilical cord blood with vascular endothelial growth factor gene. Hypertens Res. 2004;27(2):119-128.CrossRefPubMedGoogle Scholar
  38. 38.
    Cho S-W, Gwak S-J, Kang S-W, et al. Enhancement of angiogenic efficacy of human cord blood cell transplantation. Tissue Eng. 2006;12(6):1651-1661.CrossRefPubMedGoogle Scholar
  39. 39.
    Finney MR, Greco NJ, Haynesworth SE, et al. Direct comparison of umbilical cord blood versus bone marrow-derived endothelial precursor cells in mediating neovascularization in response to vascular ischemia. Biol Blood Marrow Transplant. 2006;12:585-593.CrossRefPubMedGoogle Scholar
  40. 40.
    Pesce M, Orlandi A, Iachinioto MG, et al. Myoendothelial differentiation of human umbilical cord blood-derived stem cells in ischemic limb tissue. Circ Res. 2003;93:51-62.CrossRefGoogle Scholar
  41. 41.
    Voltarelli JC, Couri CEB, Stracieri ABP, et al. Autologous nonmyeloablative hematopoietic stem cell transplantation in newly diagnosed type 1 diabetes mellitus. JAMA. 2007;297(14):1568-1576.CrossRefPubMedGoogle Scholar
  42. 42.
    US National Institutes of Health. Umbilical cord blood infusion to treat type 1 diabetes. Available at: Accessed September 20, 2006.
  43. 43.
    Haller MJ, Viener HL, Wasserfall C, Brusko T, Atkinson MA, Schatz DA. Autologous umbilical cord blood infusion for type 1 diabetes. Exp Hematol. 2008;36(6):710-715.CrossRefPubMedGoogle Scholar
  44. 44.
    Ende N, Chen R, Reddi AS. Effect of human umbilical cord blood cells on glycemia and insulinitis in type 1 diabetic mice. Biochem Biophys Res Commun. 2004;325:665-669.CrossRefPubMedGoogle Scholar
  45. 45.
    Ende N, Chen R, Mack R. NOD/LtJ type I diabetes in mice and the effect of stem cells (Berashis) derived from human umbilical cord blood. J Med. 2002;33:181-187.PubMedGoogle Scholar
  46. 46.
    Harris DT, M Badowski and SM Harman. Treatment of type I diabetes in the NOD mouse with syngeneic cord blood stem cells. Submitted, Open Stem Cell J. 2009;1:62-68, doi: 10.2174/1876893800901010062Google Scholar
  47. 47.
    Sun B, Roh K-H, Lee S-R, Lee Y-S, Kang K-S. Induction of human umbilical cord blood-derived stem cells with embryonic stem cell phenotypes into insulin producing islet-like structures. Biochem Biophys Res Commun 2007: doi: 10.1016/j.bbrc, 2007.01.069.Google Scholar
  48. 48.
    Denner L, Bodenburg Y, Zhao JG, et al. Directed engineering of umbilical cord blood stem cells to produce C-peptide and insulin. Cell Prolif. 2007;40(3):367-380.CrossRefPubMedGoogle Scholar
  49. 49.
    Jang YK, Park JJ, Lee MC, et al. Retinoic acid-mediated induction of neurons and glial cells from human umbilical cord-derived hematopoietic stem cells. J Neurosci Res. 2004;75:573-584.CrossRefPubMedGoogle Scholar
  50. 50.
    Buzanska L, Jurga M, Stachowiak EK, Stachowiak MK, Domanska-Janik K. Neural stem-like cell line derived from a nonhematopoietic population of human umbilical cord blood. Stem Cells Develop. 2006;15:391-406.CrossRefGoogle Scholar
  51. 51.
    Chen N, Hudson JE, Walczak P, et al. Human umbilical cord blood progenitors: the potential of these hematopoietic cells to become neural. Stem Cells. 2005;23:1560-1570.CrossRefPubMedGoogle Scholar
  52. 52.
    Harris DT, Ahmad N, Saxena SK et al. The potential of cord blood stem cells for use in tissue engineering. Abstract, International TESi meeting, Oct 2005 Shanghai, China.Google Scholar
  53. 53.
    Chen J, Sanberg PR, Li Y, et al. Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke. 2001;32:2682-2688.CrossRefPubMedGoogle Scholar
  54. 54.
    Willing AE, Lixian J, Milliken M, et al. Intravenous versus intrastriatal cord blood administration in a rodent model of stroke. J Neurosci Res. 2003;73(3):296-307.CrossRefPubMedGoogle Scholar
  55. 55.
    Borlongan CV, Hadman M, Sanberg CD, Sanberg PR. Central nervous system entry of peripherally injected umbilical cord blood cells is not required for neuroprotection in stroke. Stroke. 2004;35:2385-2389.CrossRefPubMedGoogle Scholar
  56. 56.
    Newman MB, Willing AE, Manressa JJ, Sanberg CD, Sanberg PR. Cytokines produced by cultured human umbilical cord blood (HUCB) cells: implications for brain repair. Exp Neurol. 2006;199(1):201-208.CrossRefPubMedGoogle Scholar
  57. 57.
    Vendrame M, Cassady J, Newcomb J, et al. Infusion of human umbilical cord blood cells in a rat model of stroke dose-dependently rescues behavioral deficits and reduces infarct volume. Stroke. 2004;35:2390-2395.CrossRefPubMedGoogle Scholar
  58. 58.
    Xiao J, Nan Z, Motooka Y, Low WC. Transplantation of a novel cell line population of umbilical cord blood stem cells ameliorates neurological deficits associated with ischemic brain injury. Stem Cells Dev. 2005;14:722-733.CrossRefPubMedGoogle Scholar
  59. 59.
    Newcomb JD, Ajrno CT, Sanberg CD, et al. Timing of cord blood treatment after experimental stroke determines therapeutic efficacy. Cell Transplant. 2006;15:213-223.CrossRefPubMedGoogle Scholar
  60. 60.
    Nan Z, Grande A, Sanberg CD, Sanberg PR, Low WC. Infusion of human umbilical cord blood ameliorates neurologic deficits in rats with hemorrhagic brain injury. Ann NY Acad Sci. 2005;1049(1):84-96.CrossRefPubMedGoogle Scholar
  61. 61.
    Bliss T, Guzman R, Daadi M, Steinberg GK. Cell transplantation therapy for stroke. Stroke. 2007;38:817-826.CrossRefPubMedGoogle Scholar
  62. 62.
    Saporta S, Kim JJ, Willing AE, et al. Human umbilical cord blood stem cells infusion in spinal cord injury: engraftment and beneficial influence on behavior. J Hematother Stem Cell Res. 2003;12:271-278.CrossRefPubMedGoogle Scholar
  63. 63.
    Kuh SU, Cho YE, Yoon DH, et al. Functional recovery after human umbilical cord blood cells transplantation with brain derived-neurotropic factor into the spinal cord injured rats. Acta Neurochir (Wein). 2005;14:985-992.CrossRefGoogle Scholar
  64. 64.
    Kang KS, Kim SW, Oh YH, et al. Thirty-seven-year old spinal cord-injured female patient, transplanted of multipotent stem cells from human UC blood with improved sensory perception and mobility, both functionally and morphologically: a case study. Cytotherapy. 2005;7:368-373.CrossRefPubMedGoogle Scholar
  65. 65.
    Lu D, Sanberg PR, Mahmood A, et al. Intravenous administration of human umbilical cord blood reduces neurological deficit in the rat after traumatic brain injury. Cell Transplant. 2002;11:275-281.PubMedGoogle Scholar
  66. 66.
    Meier C, Middleanis J, Wasielewski B, et al. Spastic paresis after perinatal brain damage in rats is reduced by human cord blood mononuclear cells. Ped Res. 2006;59:244-249.CrossRefGoogle Scholar
  67. 67.
    Ende N, Chen R. Parkinson’s disease mice and human umbilical cord blood. J Med. 2002;33:173-180.PubMedGoogle Scholar
  68. 68.
    Gaebuzova-Davis S, Willing AE, Zigova T. Intravenous administration of human umbilical cord blood cells in a mouse model of amyotrophic lateral sclerosis: distribution, migration, and differentiation. J Hematother Stem Cell Res. 2003;12:255-270.CrossRefGoogle Scholar
  69. 69.
    Germain L, Auger FA, Grandbois E, et al. Reconstructed human cornea produced in vitro by tissue engineering. Pathobiology. 1999;67:140-147.CrossRefPubMedGoogle Scholar
  70. 70.
    Germain L, Carrier P, Auger FA, Salesse C, Guerin SL. Can we produce a human corneal equivalent by tissue engineering? Prog Retin Eye Res. 2000;19(5):497-527.CrossRefGoogle Scholar
  71. 71.
    Harris DT, He X, Camacho D, Gonzalez V, Nichols JC. The potential of cord blood stem cells for use in tissue engineering of the eye, Stem Cells & Regenerative Medicine, Jan 23–25, 2006, San Francisco, AbstractGoogle Scholar
  72. 72.
    Nichols JC, He X, Harris DT. Differentiation of cord blood stem cells into corneal epithelium. Invest Ophthalmol Vis Sci. 2005;46:E-Abstract–4772.Google Scholar
  73. 73.
    Badiavas EV, Abedi M, Butmarc J, Falanga V, Quesenberry P. Participation of bone marrow derived cells in cutaneous wound healing. J Cell Physiol. 2003;196:245-250.CrossRefPubMedGoogle Scholar
  74. 74.
    Valbonesi M, Giannini G, Migliori F, Dalla Costa R, Dejana AM. Cord blood (CB) stem cells for wound repair. Preliminary report of 2 cases. Transfus Apher Sci. 2004;30(2):153-156.CrossRefPubMedGoogle Scholar
  75. 75.
    Harting MT, Baumgartner JE, Worth LL, et al. Cell therapies for traumatic brain injury. Neurosurg Focus. 2008;24(3–4):E18.CrossRefPubMedGoogle Scholar
  76. 76.
    Revoltella RP, Papini S, Rosellini A, et al. Cochlear repair by transplantation of human cord blood CD133+ cells to nod-scid mice made deaf with kanamycin and noise. Cell Transplant. 2008;17:665-678.CrossRefPubMedGoogle Scholar

Copyright information

© Springer London 2011

Authors and Affiliations

  1. 1.Department of ImmunobiologyThe University of ArizonaTucsonUSA

Personalised recommendations