Human Umbilical Cord Blood Mononuclear Cells in the Treatment of Acute Myocardial Infarction

  • Robert J. Henning


Acute coronary occlusion with myocardial infarction is the leading cause of morbidity and mortality in the Western world and, according to the World Health Organization, it will be the major cause of death in the world by the year 2020. 1 Each year more than one million Americans experience an acute myocardial infarction and approximately 400,000 die from acute complications of myocardial infarction. 2 In addition, every year more than 400,000 Americans develop new onset congestive heart failure. 2 A critical determinant of the prognosis of every patient with ischemic heart disease is the size of their myocardial infarction, which directly determines the magnitude of heart dilation, the degree of impairment of heart pump function, the development of heart failure, and, ultimately, the prognosis of the patient.


Left Ventricular Ejection Fraction Acute Myocardial Infarction Human Embryonic Stem Cell Bone Marrow Stem Cell Myocardial Infarction Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Lopez AD, Murray C. The global burden of disease, 1990–2020. Nat Med. 1998;4:1241-1243.CrossRefPubMedGoogle Scholar
  2. 2.
    Rosamond W, Flegal K. Heart disease statistics, 2007. Circulation. 2007;115:e69-e171.CrossRefPubMedGoogle Scholar
  3. 3.
    Murry CE, Field LJ, Menasche P. Cell-based cardiac repair: reflections at the 10 year point. Circulation. 2005;112:3174-3183.CrossRefPubMedGoogle Scholar
  4. 4.
    Kehat I, Kenyagin-Karsenti D, Snir M, Segev H. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest. 2001;108:407-414.PubMedGoogle Scholar
  5. 5.
    McDevitt TC, Laflamme MA, Murry CE. Proliferation of cardiomyocytes derived from human embryonic stem cells is mediated via the IGF/PI3-kinase/Akt signaling pathway. J Mol Cell Cardiol. 2005;39:865-873.CrossRefPubMedGoogle Scholar
  6. 6.
    Laflamme MA, Chen KY, Naumova AV, et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol. 2007;25:1015-1024.CrossRefPubMedGoogle Scholar
  7. 7.
    Soonpaa MH, Koh GY, Klug MG, Field LJ. Formation of nascent intercalated disks between grafted fetal cardiomyocytes and host myocardium. Science. 1994;264:98-101.CrossRefPubMedGoogle Scholar
  8. 8.
    Murry CE, Wiseman RW, Schwartz SM, Hauschka SD. Skeletal myoblast transplantation for repair of myocardial necrosis. J Clin Investig. 1996;98:2512-2523.CrossRefPubMedGoogle Scholar
  9. 9.
    Taylor DA, Atkins BZ, Hungspreugs P. Regenerating functional myocardium: improved performance after skeletal myoblast transplantation. Nat Med. 1998;4:929-933.CrossRefPubMedGoogle Scholar
  10. 10.
    Scorsin M, Hagege A, Vilquin J. Comparison of fetal cardiomyocytes and skeletal myoblast transplantation on postinfarction left ventricular function. J Thorac Cardiovasc Surg. 2000;119:1169-1175.CrossRefPubMedGoogle Scholar
  11. 11.
    Ghostine S, Carrion C, Souza L, et al. Long-term efficacy of myoblast transplantation on regional structure and function after myocardial infarction. Circulation. 2002;106:I-131-I-137.Google Scholar
  12. 12.
    Liechty KW, MacKenzie TC, Shaaban AF. Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in-utero transplantation in sheep. Nat Med. 2000;6(11):1282-1286.CrossRefPubMedGoogle Scholar
  13. 13.
    Pittenger MF, Mackay AM, Beck S, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143-147.CrossRefPubMedGoogle Scholar
  14. 14.
    Shake JG, Gruber PJ, Baumgartner WA. Mesenchymal stem cell implantation in a swine myocardial infarct model: Engraftment and function effects. Ann Thorac Surg. 2002;73:1919-1926.CrossRefPubMedGoogle Scholar
  15. 15.
    Strauer BE, Brehm M, Zeus T, Kostering M. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation. 2002;106:1913-1918.CrossRefPubMedGoogle Scholar
  16. 16.
    Tomita S, Li R, Weisel RD, et al. Autologous transplantation of bone marrow cells improve damaged heart function. Circulation. 1999;110:II247-II256.Google Scholar
  17. 17.
    Orlic D, Kajstura J, Chimenti S, et al. Bone marrow cells regenerate infarcted myocardium. Nature. 2001;410:70-75.CrossRefGoogle Scholar
  18. 18.
    Perin EC, Dohmann HFR, Borojevic R, Silva S. Transendo­cardial, autologous bone marrow cell ­transplantation for severe, chronic ischemic heart failure. Circulation. 2003;107:2294-2302.CrossRefPubMedGoogle Scholar
  19. 19.
    Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science. 1997;276:71-74.CrossRefPubMedGoogle Scholar
  20. 20.
    Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in adult murine heart. Circulation. 2002;105:93-98.CrossRefPubMedGoogle Scholar
  21. 21.
    Broxmeyer HE. Cellular Characteristics of Cord Blood and Cord Blood Transplantation. Bethesda, MD: AABB Press; 1998.Google Scholar
  22. 22.
    Broxmeyer HE, Hangoc G, Cooper S, et al. Growth characteristics and expansion of human umbilical cord blood. Proc Natl Acad Sci USA. 1992;89:4109-4113.CrossRefPubMedGoogle Scholar
  23. 23.
    Kohli-Kumar M, Shahidi NT, Broxmeyer HE. Haemopoietic stem/progenitor cell transplantation in Fanconi anemia using HLA matched umbilical cord blood cells. Br J Haematol. 1993;85:419-422.CrossRefPubMedGoogle Scholar
  24. 24.
    Wagner JE, Broxmeyer HE, Byrd RL, Zehnbauer B. Transplantation of umbilical cord blood after myeloablative therapy: analysis of engraftment. Blood. 1992;79:1874-1881.PubMedGoogle Scholar
  25. 25.
    Lu M, Shen RN, Broxmeyer HE. Stem cells from bone marrow, umbilical cord and peripheral blood for clinical application. Crit Rev Oncol Hematol. 1996;22:61-78.CrossRefPubMedGoogle Scholar
  26. 26.
    Lu L, Ge Y, Li Z-H, Breie B, Clapp DW. CD34 stem/progenitor cells purified from cryopreserved normal cord blood can be transduced with high efficiency. Cell Transplant. 1995;4:493-503.CrossRefPubMedGoogle Scholar
  27. 27.
    Traylor S, Bryson YJ. Impaired production of gamma-interferon by newborn cells in-vitro due to a functionally immature macrophage. J Immunol. 1985;134:1493-1497.Google Scholar
  28. 28.
    Erices A, Conget P, Minguell JJ. Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol. 2000;109:235-242.CrossRefPubMedGoogle Scholar
  29. 29.
    Nieda M, Nicol AN, Denning-Kendall P, Sweetenham J. Endothelial cell precursors are normal components of human umbilical cord blood. Br J Haematol. 1997;98:775-777.CrossRefPubMedGoogle Scholar
  30. 30.
    Broxmeyer HE, Douglas GW, Hangoc G, Cooper S. Human umbilical cord blood as a source of transplantable hematopoietic stem/progenitor cells. Proc Natl Acad Sci USA. 1989;86:3828-3832.CrossRefPubMedGoogle Scholar
  31. 31.
    Piacibello W, Sanavio F, Garretto L, et al. Extensive ­amplification and sell-renewal of human primitive hematopoietic stem cells from cord blood. Blood. 1997;89:2644-2653.PubMedGoogle Scholar
  32. 32.
    Henning RJ, Abu-Ali H, Balis J, Morgan MB, Willing AE, Sanberg PR. Human umbilical cord blood mononuclear cells for the treatment of acute myocardial infarction. Cell Transplant. 2004;13:729-739.CrossRefGoogle Scholar
  33. 33.
    Henning RJ, Burgos JD, Ondrovic L, Sanberg P, Morgan MB. Human umbilical cord blood progenitor cells are attracted to infarcted myocardium and significantly reduce myocardial infarction size. Cell Transplant. 2006;15:647-658.CrossRefPubMedGoogle Scholar
  34. 34.
    Henning RJ, Burgos JD, Vasko M, et al. Human cord blood cells and myocardial infarction: effect of dose and route of administration on infarct size. Cell Transplant. 2007;16:907-917.CrossRefPubMedGoogle Scholar
  35. 35.
    Henning RJ, Shariff M, Eadula U, et al. Human cord blood mononuclear cells decrease cytokines and inflammatory cells in acute myocardial infarction. Stem Cells Dev. 2008;17(6):1207-1219.CrossRefPubMedGoogle Scholar
  36. 36.
    Murohara T, Ikeda H, Duan J, et al. Transplanted cord blood-derived endothelial precursor cells augment postnatal neovascularization. J Clin Investig. 2000;105:1527-1536.CrossRefPubMedGoogle Scholar
  37. 37.
    Pomyje J, Zivny J. Expression of genes regulating angiogenesis in human circulating hematopoietic cord blood CD 34+/CD133+ cells. Eur J Haematol. 2003;70:143-150.CrossRefPubMedGoogle Scholar
  38. 38.
    Abboud M, Xu F, LaVia M. Study of early hematopoietic precursors in human cord blood. Exp Hematol. 1992;20:10119-10122.Google Scholar
  39. 39.
    Pesce M, Orland A, Iachininoto MG, et al. Myoendothelial differentiation of human umbilical cord blood-derived stem cells in ischemic limb tissues. Circ Res. 2003;92:e51-e362.CrossRefGoogle Scholar
  40. 40.
    Ma N, Stamm C, Kaminski A, et al. Human cord blood cells induce angiogenesis following myocardial infarction in NOD/scid-mice. Cardiovasc Res. 2005;66:45-54.CrossRefPubMedGoogle Scholar

Copyright information

© Springer London 2011

Authors and Affiliations

  1. 1.Center for Cardiovascular ResearchJames A. Haley Medical Center/University of South FloridaTampaUSA

Personalised recommendations