Skip to main content

Human Umbilical Cord Blood Mononuclear Cells in the Treatment of Acute Myocardial Infarction

  • Chapter
  • First Online:
Regenerative Medicine Using Pregnancy-Specific Biological Substances
  • 779 Accesses

Abstract

Acute coronary occlusion with myocardial infarction is the leading cause of morbidity and mortality in the Western world and, according to the World Health Organization, it will be the major cause of death in the world by the year 2020. 1 Each year more than one million Americans experience an acute myocardial infarction and approximately 400,000 die from acute complications of myocardial infarction. 2 In addition, every year more than 400,000 Americans develop new onset congestive heart failure. 2 A critical determinant of the prognosis of every patient with ischemic heart disease is the size of their myocardial infarction, which directly determines the magnitude of heart dilation, the degree of impairment of heart pump function, the development of heart failure, and, ultimately, the prognosis of the patient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lopez AD, Murray C. The global burden of disease, 1990–2020. Nat Med. 1998;4:1241-1243.

    Article  CAS  PubMed  Google Scholar 

  2. Rosamond W, Flegal K. Heart disease statistics, 2007. Circulation. 2007;115:e69-e171.

    Article  PubMed  Google Scholar 

  3. Murry CE, Field LJ, Menasche P. Cell-based cardiac repair: reflections at the 10 year point. Circulation. 2005;112:3174-3183.

    Article  PubMed  Google Scholar 

  4. Kehat I, Kenyagin-Karsenti D, Snir M, Segev H. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest. 2001;108:407-414.

    CAS  PubMed  Google Scholar 

  5. McDevitt TC, Laflamme MA, Murry CE. Proliferation of cardiomyocytes derived from human embryonic stem cells is mediated via the IGF/PI3-kinase/Akt signaling pathway. J Mol Cell Cardiol. 2005;39:865-873.

    Article  CAS  PubMed  Google Scholar 

  6. Laflamme MA, Chen KY, Naumova AV, et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol. 2007;25:1015-1024.

    Article  CAS  PubMed  Google Scholar 

  7. Soonpaa MH, Koh GY, Klug MG, Field LJ. Formation of nascent intercalated disks between grafted fetal cardiomyocytes and host myocardium. Science. 1994;264:98-101.

    Article  CAS  PubMed  Google Scholar 

  8. Murry CE, Wiseman RW, Schwartz SM, Hauschka SD. Skeletal myoblast transplantation for repair of myocardial necrosis. J Clin Investig. 1996;98:2512-2523.

    Article  CAS  PubMed  Google Scholar 

  9. Taylor DA, Atkins BZ, Hungspreugs P. Regenerating functional myocardium: improved performance after skeletal myoblast transplantation. Nat Med. 1998;4:929-933.

    Article  CAS  PubMed  Google Scholar 

  10. Scorsin M, Hagege A, Vilquin J. Comparison of fetal cardiomyocytes and skeletal myoblast transplantation on postinfarction left ventricular function. J Thorac Cardiovasc Surg. 2000;119:1169-1175.

    Article  CAS  PubMed  Google Scholar 

  11. Ghostine S, Carrion C, Souza L, et al. Long-term efficacy of myoblast transplantation on regional structure and function after myocardial infarction. Circulation. 2002;106:I-131-I-137.

    Google Scholar 

  12. Liechty KW, MacKenzie TC, Shaaban AF. Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in-utero transplantation in sheep. Nat Med. 2000;6(11):1282-1286.

    Article  CAS  PubMed  Google Scholar 

  13. Pittenger MF, Mackay AM, Beck S, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143-147.

    Article  CAS  PubMed  Google Scholar 

  14. Shake JG, Gruber PJ, Baumgartner WA. Mesenchymal stem cell implantation in a swine myocardial infarct model: Engraftment and function effects. Ann Thorac Surg. 2002;73:1919-1926.

    Article  PubMed  Google Scholar 

  15. Strauer BE, Brehm M, Zeus T, Kostering M. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation. 2002;106:1913-1918.

    Article  PubMed  Google Scholar 

  16. Tomita S, Li R, Weisel RD, et al. Autologous transplantation of bone marrow cells improve damaged heart function. Circulation. 1999;110:II247-II256.

    Google Scholar 

  17. Orlic D, Kajstura J, Chimenti S, et al. Bone marrow cells regenerate infarcted myocardium. Nature. 2001;410:70-75.

    Article  Google Scholar 

  18. Perin EC, Dohmann HFR, Borojevic R, Silva S. Transendo­cardial, autologous bone marrow cell ­transplantation for severe, chronic ischemic heart failure. Circulation. 2003;107:2294-2302.

    Article  PubMed  Google Scholar 

  19. Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science. 1997;276:71-74.

    Article  CAS  PubMed  Google Scholar 

  20. Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in adult murine heart. Circulation. 2002;105:93-98.

    Article  PubMed  Google Scholar 

  21. Broxmeyer HE. Cellular Characteristics of Cord Blood and Cord Blood Transplantation. Bethesda, MD: AABB Press; 1998.

    Google Scholar 

  22. Broxmeyer HE, Hangoc G, Cooper S, et al. Growth characteristics and expansion of human umbilical cord blood. Proc Natl Acad Sci USA. 1992;89:4109-4113.

    Article  CAS  PubMed  Google Scholar 

  23. Kohli-Kumar M, Shahidi NT, Broxmeyer HE. Haemopoietic stem/progenitor cell transplantation in Fanconi anemia using HLA matched umbilical cord blood cells. Br J Haematol. 1993;85:419-422.

    Article  CAS  PubMed  Google Scholar 

  24. Wagner JE, Broxmeyer HE, Byrd RL, Zehnbauer B. Transplantation of umbilical cord blood after myeloablative therapy: analysis of engraftment. Blood. 1992;79:1874-1881.

    CAS  PubMed  Google Scholar 

  25. Lu M, Shen RN, Broxmeyer HE. Stem cells from bone marrow, umbilical cord and peripheral blood for clinical application. Crit Rev Oncol Hematol. 1996;22:61-78.

    Article  CAS  PubMed  Google Scholar 

  26. Lu L, Ge Y, Li Z-H, Breie B, Clapp DW. CD34 stem/progenitor cells purified from cryopreserved normal cord blood can be transduced with high efficiency. Cell Transplant. 1995;4:493-503.

    Article  CAS  PubMed  Google Scholar 

  27. Traylor S, Bryson YJ. Impaired production of gamma-interferon by newborn cells in-vitro due to a functionally immature macrophage. J Immunol. 1985;134:1493-1497.

    Google Scholar 

  28. Erices A, Conget P, Minguell JJ. Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol. 2000;109:235-242.

    Article  CAS  PubMed  Google Scholar 

  29. Nieda M, Nicol AN, Denning-Kendall P, Sweetenham J. Endothelial cell precursors are normal components of human umbilical cord blood. Br J Haematol. 1997;98:775-777.

    Article  CAS  PubMed  Google Scholar 

  30. Broxmeyer HE, Douglas GW, Hangoc G, Cooper S. Human umbilical cord blood as a source of transplantable hematopoietic stem/progenitor cells. Proc Natl Acad Sci USA. 1989;86:3828-3832.

    Article  CAS  PubMed  Google Scholar 

  31. Piacibello W, Sanavio F, Garretto L, et al. Extensive ­amplification and sell-renewal of human primitive hematopoietic stem cells from cord blood. Blood. 1997;89:2644-2653.

    CAS  PubMed  Google Scholar 

  32. Henning RJ, Abu-Ali H, Balis J, Morgan MB, Willing AE, Sanberg PR. Human umbilical cord blood mononuclear cells for the treatment of acute myocardial infarction. Cell Transplant. 2004;13:729-739.

    Article  Google Scholar 

  33. Henning RJ, Burgos JD, Ondrovic L, Sanberg P, Morgan MB. Human umbilical cord blood progenitor cells are attracted to infarcted myocardium and significantly reduce myocardial infarction size. Cell Transplant. 2006;15:647-658.

    Article  PubMed  Google Scholar 

  34. Henning RJ, Burgos JD, Vasko M, et al. Human cord blood cells and myocardial infarction: effect of dose and route of administration on infarct size. Cell Transplant. 2007;16:907-917.

    Article  PubMed  Google Scholar 

  35. Henning RJ, Shariff M, Eadula U, et al. Human cord blood mononuclear cells decrease cytokines and inflammatory cells in acute myocardial infarction. Stem Cells Dev. 2008;17(6):1207-1219.

    Article  CAS  PubMed  Google Scholar 

  36. Murohara T, Ikeda H, Duan J, et al. Transplanted cord blood-derived endothelial precursor cells augment postnatal neovascularization. J Clin Investig. 2000;105:1527-1536.

    Article  CAS  PubMed  Google Scholar 

  37. Pomyje J, Zivny J. Expression of genes regulating angiogenesis in human circulating hematopoietic cord blood CD 34+/CD133+ cells. Eur J Haematol. 2003;70:143-150.

    Article  PubMed  Google Scholar 

  38. Abboud M, Xu F, LaVia M. Study of early hematopoietic precursors in human cord blood. Exp Hematol. 1992;20:10119-10122.

    Google Scholar 

  39. Pesce M, Orland A, Iachininoto MG, et al. Myoendothelial differentiation of human umbilical cord blood-derived stem cells in ischemic limb tissues. Circ Res. 2003;92:e51-e362.

    Article  Google Scholar 

  40. Ma N, Stamm C, Kaminski A, et al. Human cord blood cells induce angiogenesis following myocardial infarction in NOD/scid-mice. Cardiovasc Res. 2005;66:45-54.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Henning .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer London

About this chapter

Cite this chapter

Henning, R.J. (2011). Human Umbilical Cord Blood Mononuclear Cells in the Treatment of Acute Myocardial Infarction. In: Bhattacharya, N., Stubblefield, P. (eds) Regenerative Medicine Using Pregnancy-Specific Biological Substances. Springer, London. https://doi.org/10.1007/978-1-84882-718-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-718-9_24

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-717-2

  • Online ISBN: 978-1-84882-718-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics