Therapeutic Potential of Placental Umbilical Cord Blood in Cardiology

  • Shunichio Miyoshi
  • Nobuhiro Nishiyama
  • Naoko Hida
  • Akihiro Umezawa
  • Satoshi Ogawa


Umbilical cord blood is medical waste and common allograft cellular source for bone marrow transplantation. It contains a special mesenchymal stem cells, whose cardiomyogenic transdifferentiation efficiency was about 100 times higher than well known marrow-derived mesenchymal stem cells. In this section, we would like to introduce the potential of umbilical cord blood derived mesenchymal stem cell for cardiac stem cell therapy.


Stem Cell Umbilical Cord Blood Cellular Source Medical Waste Somatic Stem Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Klug MG, Soonpaa MH, Koh GY, Field LJ. Genetically selected cardiomyocytes from differentiating embronic stem cells form stable intracardiac grafts. J Clin Invest. 1996;98(1):216-224.CrossRefPubMedGoogle Scholar
  2. 2.
    Min JY, Yang Y, Converso KL, et al. Transplantation of embryonic stem cells improves cardiac function in postinfarcted rats. J Appl Physiol. 2002;92(1):288-296.CrossRefPubMedGoogle Scholar
  3. 3.
    Leor J, Gerecht-Nir S, Cohen S, et al. Undifferentiated human embryonic stem cells are not guided to form new myocardium by transplantation into normal and infarcted heart. J Am Coll Cardiol. 2005;45(3 suppl A):151 (abstract).Google Scholar
  4. 4.
    Makino S, Fukuda K, Miyoshi S, et al. Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest. 1999;103(5):697-705.CrossRefPubMedGoogle Scholar
  5. 5.
    Takeda Y, Mori T, Imabayashi H, et al. Can the life span of human marrow stromal cells be prolonged by bmi-1, E6, E7, and/or telomerase without affecting cardiomyogenic ­differentiation? J Gene Med. 2004;6(8):833-845.CrossRefPubMedGoogle Scholar
  6. 6.
    Assmus B, Fischer-Rasokat U, Honold J, et al. Transcoronary transplantation of functionally competent BMCs is associated with a decrease in natriuretic peptide serum levels and improved survival of patients with chronic postinfarction heart failure: results of the TOPCARE-CHD Registry. Circ Res. 2007;100(8):1234-1241.CrossRefPubMedGoogle Scholar
  7. 7.
    Assmus B, Schachinger V, Teupe C, et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI). Circulation. 2002;106(24):3009-3017.CrossRefPubMedGoogle Scholar
  8. 8.
    Wollert KC, Meyer GP, Lotz J, et al. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet. 2004;364(9429):141-148.CrossRefPubMedGoogle Scholar
  9. 9.
    Lunde K, Solheim S, Aakhus S, Arnesen H, Abdelnoor M, Forfang K. Autologous stem cell transplantation in acute myocardial infarction: the ASTAMI randomized controlled trial. Intracoronary transplantation of autologous mononuclear bone marrow cells, study design and safety aspects. Scand Cardiovasc J. 2005;39(3):150-158.CrossRefPubMedGoogle Scholar
  10. 10.
    Schachinger V, Erbs S, Elsasser A, et al. Improved clinical outcome after intracoronary administration of bone-marrow-derived progenitor cells in acute myocardial infarction: final 1-year results of the REPAIR-AMI trial. Eur Heart J. 2006;27(23):2775-2783.CrossRefPubMedGoogle Scholar
  11. 11.
    Fadini GP, Miorin M, Facco M, et al. Circulating endothelial progenitor cells are reduced in peripheral vascular ­complications of type 2 diabetes mellitus. J Am Coll Cardiol. 2005;45(9):1449-1457.CrossRefPubMedGoogle Scholar
  12. 12.
    Heiss C, Keymel S, Niesler U, Ziemann J, Kelm M, Kalka C. Impaired progenitor cell activity in age-related endothelial dysfunction. J Am Coll Cardiol. 2005;45(9):1441-1448.CrossRefPubMedGoogle Scholar
  13. 13.
    Selmani Z, Naji A, Zidi I, et al. Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4 + CD25highFOXP3+ regulatory T cells. Stem Cells. 2008;26(1):212-222.CrossRefPubMedGoogle Scholar
  14. 14.
    Lila N, Amrein C, Guillemain R, et al. Human leukocyte antigen-G expression after heart transplantation is associated with a reduced incidence of rejection. Circulation. 2002;105(16):1949-1954.CrossRefPubMedGoogle Scholar
  15. 15.
    Makkar RR, Price MJ, Lill M, et al. Intramyocardial injection of allogenic bone marrow-derived mesenchymal stem cells without immunosuppression preserves cardiac function in a porcine model of myocardial infarction. J Cardiovasc Pharmacol Ther. 2005;10(4):225-233.CrossRefPubMedGoogle Scholar
  16. 16.
    Shake JG, Gruber PJ, Baumgartner WA, et al. Mesenchymal stem cell implantation in a swine myocardial infarct model: engraftment and functional effects. Ann Thorac Surg. 2002;73(6):1919-1925. Discussion 1926.CrossRefPubMedGoogle Scholar
  17. 17.
    Miyoshi S, Hida N, Nishiyama N, et al. Human menstrual blood is a potential cell source for cardiac stem cell therapy [abstract]. J Am Coll Cardiol. 2005;45(3 suppl A):156.Google Scholar
  18. 18.
    Nishiyama N, Miyoshi S, Hida N, et al. The significant cardiomyogenic potential of human umbilical cord blood-derived mesenchymal stem cells in vitro. Stem Cells. 2007;25(8):2017-2024.CrossRefPubMedGoogle Scholar
  19. 19.
    Okamoto K, Miyoshi S, Toyoda M, et al. ‘Working’ cardiomyocytes exhibiting plateau action potentials from human placenta-derived extraembryonic mesodermal cells. Exp Cell Res. 2007;313:2550-2562.CrossRefPubMedGoogle Scholar
  20. 20.
    Terai M, Uyama T, Sugiki T, Li X, Umezawa A, Kiyono T. Immortalization of human fetal cells: the life span of umbilical cord blood-derived cells can be prolonged without manipulating p16INK4a/RB braking pathway. Mol Biol Cell. 2005;16:1491-1499.CrossRefPubMedGoogle Scholar
  21. 21.
    Balsam L, Wagers A, Christensen J, Kofidis T, Weissman I, Robbins R. Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature. 2004;428:668-673.CrossRefPubMedGoogle Scholar
  22. 22.
    Murry C, Soonpaa M, Reinecke H, et al. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature. 2004;428:664-668.CrossRefPubMedGoogle Scholar
  23. 23.
    Gojo S, Gojo N, Takeda Y, et al. In vivo cardiovasculogenesis by direct injection of isolated adult mesenchymal stem cells. Exp Cell Res. 2003;288(1):51-59.CrossRefPubMedGoogle Scholar
  24. 24.
    Tang YL, Zhao Q, Zhang YC, et al. Autologous mesenchymal stem cell transplantation induce VEGF and neovascularization in ischemic myocardium. Regul Pept. 2004;117(1):3-10.CrossRefPubMedGoogle Scholar
  25. 25.
    Kocher AA, Schuster MD, Szabolcs MJ, et al. Neovascu­larization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med. 2001;7(4):430-436.CrossRefPubMedGoogle Scholar
  26. 26.
    Gnecchi M, He H, Liang O, et al. Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat Med. 2005;11:367-368.CrossRefPubMedGoogle Scholar
  27. 27.
    Goodwin HS, Bicknese AR, Chien SN, Bogucki BD, Quinn CO, Wall DA. Multilineage differentiation activity by cells isolated from umbilical cord blood: expression of bone, fat, and neural markers. Biol Blood Marrow Transplant. 2001;7(11):581-588.CrossRefPubMedGoogle Scholar
  28. 28.
    Lee OK, Kuo TK, Chen WM, Lee KD, Hsieh SL, Chen TH. Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood. 2004;103(5):1669-1675.CrossRefPubMedGoogle Scholar
  29. 29.
    Kögler G, Sensken S, Airey J, et al. A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J Exp Med. 2004;200:123-135.CrossRefPubMedGoogle Scholar
  30. 30.
    Tomita S, Li RK, Weisel RD, et al. Autologous transplantation of bone marrow cells improves damaged heart function. Circulation. 1999;100(19 suppl):II247-II256.PubMedGoogle Scholar
  31. 31.
    Orlic D, Kajstura J, Chimenti S, et al. Bone marrow cells regenerate infarcted myocardium. Nature. 2001;410(6829):701-705.CrossRefPubMedGoogle Scholar
  32. 32.
    Wang JA, Fan YQ, Li CL, He H, Sun Y, Lv BJ. Human bone marrow-derived mesenchymal stem cells transplanted into damaged rabbit heart to improve heart function. J Zhejiang Univ Sci B. 2005;6(4):242-248.CrossRefPubMedGoogle Scholar
  33. 33.
    Chen SL, Fang WW, Ye F, et al. Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am J Cardiol. 2004;94(1):92-95.CrossRefPubMedGoogle Scholar
  34. 34.
    Hirata Y, Sata M, Motomura N, et al. Human umbilical cord blood cells improve cardiac function after myocardial infarction. Biochem Biophys Res Commun. 2005;327:609-614.CrossRefPubMedGoogle Scholar
  35. 35.
    Leor J, Guetta E, Feinberg M, et al. Human umbilical cord blood-derived CD133+ cells enhance function and repair of the infarcted myocardium. Stem Cells. 2006;24:772-780.CrossRefPubMedGoogle Scholar
  36. 36.
    Ma N, Stamm C, Kaminski A, et al. Human cord blood cells induce angiogenesis following myocardial infarction in NOD/scid-mice. Cardiovasc Res. 2005;66:45-54.CrossRefPubMedGoogle Scholar
  37. 37.
    Kim BO, Tian H, Prasongsukarn K, et al. Cell transplantation improves ventricular function after a myocardial infarction: a preclinical study of human unrestricted somatic stem cells in a porcine model. Circulation. 2005;112(9 suppl):I96-I104.PubMedGoogle Scholar
  38. 38.
    Ahn YK, Song CH, Nam KI, et al. Cord blood derived mesenchymal stem cell injection into ischemia-reperfusion myocardial injury decreases fibrosis, apoptosis, and significantly preserves ventricular systolic function. Circ J. 2005;69(suppl):396.Google Scholar

Copyright information

© Springer London 2011

Authors and Affiliations

  • Shunichio Miyoshi
    • 1
  • Nobuhiro Nishiyama
  • Naoko Hida
  • Akihiro Umezawa
  • Satoshi Ogawa
  1. 1.Department of CardiologyKeio University School of MedicineTokyoJapan

Personalised recommendations