Placenta as a Source of Stem Cells and as a Key Organ for Fetomaternal Tolerance

Chapter

Abstract

The placenta encloses the very beginnings of the mystery of life, but discloses an ever-increasing amount of information toward our understanding not only of cell development, maturation, and differentiation, but to an even greater extent, the fundamental mechanisms of immunological tolerance.

Keywords

Mesenchymal Stromal Cell Fetal Cell Human Amniotic Membrane Amniotic Cavity Intervillous Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors express their gratitude to Marco Evangelista for his invaluable help in the revision of this book chapter.

References

  1. 1.
    Benirschke K, Kaufmann P. Pathology of the Human Placenta. Berlin: Springer; 2000.Google Scholar
  2. 2.
    Cunningham FG, Macdonald PC, Gant NF, Leveno KJ, Gilstrap LC, Hankins GDF, Clark SL. Williams Obstetrics. 20th ed. Stamford, CT: Appleton&Lange; 1997.Google Scholar
  3. 3.
    Moore KL. The Developing Human. Philadelphia, PA: W.B. Saunders; 1998.Google Scholar
  4. 4.
    Billington WD. The immunological problem of pregnancy: 50 years with the hope of progress. A tribute to Peter Medawar. J Reprod Immunol. 2003;60:1-11.PubMedGoogle Scholar
  5. 5.
    Medawar P. Some immunological and endocrinological problems raised by the evolution of viviparity in vertebrates. Symp Soc Exp Biol. 1953;7:320-338.Google Scholar
  6. 6.
    Liegeois A, Escourrou J, Ouvre E, Charreire J. Microchimerism: a stable state of low-ratio proliferation of allogeneic bone marrow. Transplant Proc. 1977;9:273-276.PubMedGoogle Scholar
  7. 7.
    Ariga H, Ohto H, Busch MP, et al. Kinetics of fetal cellular and cell-free DNA in the maternal circulation during and after pregnancy: implications for noninvasive prenatal diagnosis. Transfusion. 2001;41:1524-1530.PubMedGoogle Scholar
  8. 8.
    Bianchi DW, Zickwolf GK, Weil GJ, Sylvester S, DeMaria MA. Male fetal progenitor cells persist in maternal blood for as long as 27 years postpartum. Proc Natl Acad Sci USA. 1996;93:705-708.PubMedGoogle Scholar
  9. 9.
    Kremer Hovinga IC, Koopmans M, Baelde HJ, et al. Chimerism occurs twice as often in lupus nephritis as in normal kidneys. Arthritis Rheum. 2006;54:2944-2950.PubMedGoogle Scholar
  10. 10.
    Kuroki M, Okayama A, Nakamura S, et al. Detection of maternal-fetal microchimerism in the inflammatory lesions of patients with Sjogren’s syndrome. Ann Rheum Dis. 2002;61:1041-1046.PubMedGoogle Scholar
  11. 11.
    Klintschar M, Schwaiger P, Mannweiler S, Regauer S, Kleiber M. Evidence of fetal microchimerism in Hashimoto’s thyroiditis. J Clin Endocrinol Metab. 2001;86:2494-2498.PubMedGoogle Scholar
  12. 12.
    Nelson JL, Furst DE, Maloney S, et al. Microchimerism and HLA-compatible relationships of pregnancy in scleroderma. Lancet. 1998;351:559-562.PubMedGoogle Scholar
  13. 13.
    Johnson KL, Bianchi DW. Fetal cells in maternal tissue following pregnancy: what are the consequences? Hum Reprod Update. 2004;10:497-502.PubMedGoogle Scholar
  14. 14.
    Evans PC, Lambert N, Maloney S, Furst DE, Moore JM, Nelson JL. Long-term fetal microchimerism in peripheral blood mononuclear cell subsets in healthy women and women with scleroderma. Blood. 1999;93:2033-2037.PubMedGoogle Scholar
  15. 15.
    Khosrotehrani K, Johnson KL, Cha DH, Salomon RN, Bianchi DW. Transfer of fetal cells with multilineage potential to maternal tissue. JAMA. 2004;292:75-80.PubMedGoogle Scholar
  16. 16.
    Gadi VK, Nelson JL. Fetal microchimerism in women with breast cancer. Cancer Res. 2007;67:9035-9038.PubMedGoogle Scholar
  17. 17.
    Khosrotehrani K, Stroh H, Bianchi DW, Johnson KL. Combined FISH and immunolabeling on paraffin-embedded tissue sections for the study of microchimerism. Biotechniques. 2003;34:242-244.PubMedGoogle Scholar
  18. 18.
    Thellin O, Coumans B, Zorzi W, Igout A, Heinen E. Tolerance to the foeto-placental ‘graft’: ten ways to support a child for nine months. Curr Opin Immunol. 2000;12:731-737.PubMedGoogle Scholar
  19. 19.
    Redline RW, Lu CY. Localization of fetal major histocompatibility complex antigens and maternal leukocytes in murine placenta. Implications for maternal-fetal immunological relationship. Lab Invest. 1989;61:27-36.PubMedGoogle Scholar
  20. 20.
    Redman CW, McMichael AJ, Stirrat GM, Sunderland CA, Ting A. Class 1 major histocompatibility complex antigens on human extra-villous trophoblast. Immunology. 1984;52:457-468.PubMedGoogle Scholar
  21. 21.
    Shomer B, Toder V, Egorov I, Ehrlich R. Expression of allogeneic MHC class I antigens by transgenic mouse ­trophoblast does not interfere with the normal course of pregnancy. Transgenic Res. 1998;7:343-355.PubMedGoogle Scholar
  22. 22.
    Rogers AM, Boime I, Connolly J, Cook JR, Russell JH. Maternal-fetal tolerance is maintained despite transgene-driven trophoblast expression of MHC class I, and defects in Fas and its ligand. Eur J Immunol. 1998;28:3479-3487.PubMedGoogle Scholar
  23. 23.
    Woodruff MF. Transplantation immunity and the immunological problem of pregnancy. Proc R Soc Lond B Biol Sci. 1958;148:68-75.PubMedGoogle Scholar
  24. 24.
    Ewoldsen MA, Ostlie NS, Warner CM. Killing of mouse blastocyst stage embryos by cytotoxic T lymphocytes directed to major histocompatibility complex antigens. J Immunol. 1987;138:2764-2770.PubMedGoogle Scholar
  25. 25.
    Vacchio MS, Jiang SP. The fetus and the maternal immune system: pregnancy as a model to study peripheral T-cell tolerance. Crit Rev Immunol. 1999;19:461-480.PubMedGoogle Scholar
  26. 26.
    Watanabe M, Iwatani Y, Kaneda T, et al. Changes in T, B, and NK lymphocyte subsets during and after normal pregnancy. Am J Reprod Immunol. 1997;37:368-377.PubMedGoogle Scholar
  27. 27.
    Tallon DF, Corcoran DJ, O’Dwyer EM, Greally JF. Circulating lymphocyte subpopulations in pregnancy: a longitudinal study. J Immunol. 1984;132:1784-1787.PubMedGoogle Scholar
  28. 28.
    Carter J, Newport A, Keeler KD, Dresser DW. FACS analysis of changes in T and B lymphocyte populations in the blood, spleen and lymph nodes of pregnant mice. Immunology. 1983;48:791-797.PubMedGoogle Scholar
  29. 29.
    Innes A, Cunningham C, Power DA, Catto GR. Fetus as an allograft: noncytotoxic maternal antibodies to HLA-linked paternal antigens. Am J Reprod Immunol. 1989;19:146-150.PubMedGoogle Scholar
  30. 30.
    Innes A, Power DA, Cunningham C, Dillon D, Catto GR. The alloantibody response to semiallogeneic pregnancy in the rat. I. Alloantibodies in sera and placental eluates directed to RT1A antigens. Transplantation. 1988;46:409-413.PubMedGoogle Scholar
  31. 31.
    von Rango U. Fetal tolerance in human pregnancy – a crucial balance between acceptance and limitation of trophoblast invasion. Immunol Lett. 2008;115:21-32.Google Scholar
  32. 32.
    Koch CA, Platt JL. T cell recognition and immunity in the fetus and mother. Cell Immunol. 2007;248:12-17.PubMedGoogle Scholar
  33. 33.
    Aluvihare VR, Kallikourdis M, Betz AG. Tolerance, ­suppression and the fetal allograft. J Mol Med. 2005;83:88-96.PubMedGoogle Scholar
  34. 34.
    Petroff MG. Immune interactions at the maternal-fetal interface. J Reprod Immunol. 2005;68:1-13.PubMedGoogle Scholar
  35. 35.
    Koch CA, Platt JL. Natural mechanisms for evading graft rejection: the fetus as an allograft. Springer Semin Immunopathol. 2003;25:95-117.PubMedGoogle Scholar
  36. 36.
    Mellor AL, Munn DH. Immunology at the maternal-fetal interface: lessons for T cell tolerance and suppression. Annu Rev Immunol. 2000;18:367-391.PubMedGoogle Scholar
  37. 37.
    Hunt JS, Petroff MG, McIntire RH, Ober C. HLA-G and immune tolerance in pregnancy. Faseb J. 2005;19:681-693.PubMedGoogle Scholar
  38. 38.
    Riteau B, Menier C, Khalil-Daher I, et al. HLA-G inhibits the allogeneic proliferative response. J Reprod Immunol. 1999;43:203-211.PubMedGoogle Scholar
  39. 39.
    Fournel S, Aguerre-Girr M, Huc X, et al. Cutting edge: soluble HLA-G1 triggers CD95/CD95 ligand-mediated apoptosis in activated CD8+ cells by interacting with CD8. J Immunol. 2000;164:6100-6104.PubMedGoogle Scholar
  40. 40.
    Moffett-King A. Natural killer cells and pregnancy. Nat Rev Immunol. 2002;2:656-663.PubMedGoogle Scholar
  41. 41.
    King A, Allan DS, Bowen M, et al. HLA-E is expressed on trophoblast and interacts with CD94/NKG2 receptors on decidual NK cells. Eur J Immunol. 2000;30:1623-1631.PubMedGoogle Scholar
  42. 42.
    Shiroishi M, Tsumoto K, Amano K, et al. Human inhibitory receptors Ig-like transcript 2 (ILT2) and ILT4 compete with CD8 for MHC class I binding and bind preferentially to HLA-G. Proc Natl Acad Sci USA. 2003;100:8856-8861.PubMedGoogle Scholar
  43. 43.
    Chang CC, Ciubotariu R, Manavalan JS, et al. Tolerization of dendritic cells by T(S) cells: the crucial role of inhibitory receptors ILT3 and ILT4. Nat Immunol. 2002;3:237-243.PubMedGoogle Scholar
  44. 44.
    Munn DH, Zhou M, Attwood JT, et al. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science. 1998;281:1191-1193.PubMedGoogle Scholar
  45. 45.
    Mellor AL, Munn DH. IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat Rev Immunol. 2004;4:762-774.PubMedGoogle Scholar
  46. 46.
    Munn DH, Shafizadeh E, Attwood JT, Bondarev I, Pashine A, Mellor AL. Inhibition of T cell proliferation by macrophage tryptophan catabolism. J Exp Med. 1999;189:1363-1372.PubMedGoogle Scholar
  47. 47.
    Terness P, Bauer TM, Rose L, et al. Inhibition of allogeneic T cell proliferation by indoleamine 2, 3-dioxygenase-expressing dendritic cells: mediation of suppression by tryptophan metabolites. J Exp Med. 2002;196:447-457.PubMedGoogle Scholar
  48. 48.
    Baban B, Chandler P, McCool D, Marshall B, Munn DH, Mellor AL. Indoleamine 2, 3-dioxygenase expression is restricted to fetal trophoblast giant cells during murine gestation and is maternal genome specific. J Reprod Immunol. 2004;61:67-77.PubMedGoogle Scholar
  49. 49.
    Suzuki S, Tone S, Takikawa O, Kubo T, Kohno I, Minatogawa Y. Expression of indoleamine 2, 3-dioxygenase and tryptophan 2, 3-dioxygenase in early concepti. Biochem J. 2001;355:425-429.PubMedGoogle Scholar
  50. 50.
    Munn DH, Sharma MD, Lee JR, et al. Potential regulatory function of human dendritic cells expressing indoleamine 2, 3-dioxygenase. Science. 2002;297:1867-1870.PubMedGoogle Scholar
  51. 51.
    von Rango U, Krusche CA, Beier HM, Classen-Linke I. Indoleamine-dioxygenase is expressed in human decidua at the time maternal tolerance is established. J Reprod Immunol. 2007;74:34-45.Google Scholar
  52. 52.
    Mor G, Gutierrez LS, Eliza M, Kahyaoglu F, Arici A. Fas-fas ligand system-induced apoptosis in human placenta and gestational trophoblastic disease. Am J Reprod Immunol. 1998;40:89-94.PubMedGoogle Scholar
  53. 53.
    Hunt JS, Vassmer D, Ferguson TA, Miller L. Fas ligand is positioned in mouse uterus and placenta to prevent trafficking of activated leukocytes between the mother and the conceptus. J Immunol. 1997;158:4122-4128.PubMedGoogle Scholar
  54. 54.
    Runic R, Lockwood CJ, Ma Y, Dipasquale B, Guller S. Expression of Fas ligand by human cytotrophoblasts: implications in placentation and fetal survival. J Clin Endocrinol Metab. 1996;81:3119-3122.PubMedGoogle Scholar
  55. 55.
    Coumans B, Thellin O, Zorzi W, et al. Lymphoid cell apoptosis induced by trophoblastic cells: a model of active foeto-placental tolerance. J Immunol Methods. 1999;224:185-196.PubMedGoogle Scholar
  56. 56.
    Smith SC, Leung TN, To KF, Baker PN. Apoptosis is a rare event in first-trimester placental tissue. Am J Obstet Gynecol. 2000;183:697-699.PubMedGoogle Scholar
  57. 57.
    Jerzak M, Kasprzycka M, Wierbicki P, Kotarski J, Gorski A. Apoptosis of T cells in the first trimester human decidua. Am J Reprod Immunol. 1998;40:130-135.PubMedGoogle Scholar
  58. 58.
    Kang SM, Braat D, Schneider DB, et al. A non-cleavable mutant of Fas ligand does not prevent neutrophilic destruction of islet transplants. Transplantation. 2000;69:1813-1817.PubMedGoogle Scholar
  59. 59.
    Allison J, Georgiou HM, Strasser A, Vaux DL. Transgenic expression of CD95 ligand on islet beta cells induces a granulocytic infiltration but does not confer immune privilege upon islet allografts. Proc Natl Acad Sci USA. 1997;94:3943-3947.PubMedGoogle Scholar
  60. 60.
    Frangsmyr L, Baranov V, Nagaeva O, Stendahl U, Kjellberg L, Mincheva-Nilsson L. Cytoplasmic microvesicular form of Fas ligand in human early placenta: switching the tissue immune privilege hypothesis from cellular to vesicular level. Mol Hum Reprod. 2005;11:35-41.PubMedGoogle Scholar
  61. 61.
    Abrahams VM, Straszewski-Chavez SL, Guller S, Mor G. First trimester trophoblast cells secrete Fas ligand which induces immune cell apoptosis. Mol Hum Reprod. 2004;10:55-63.PubMedGoogle Scholar
  62. 62.
    Miwa T, Zhou L, Hilliard B, Molina H, Song WC. Crry, but not CD59 and DAF, is indispensable for murine erythrocyte protection in vivo from spontaneous complement attack. Blood. 2002;99:3707-3716.PubMedGoogle Scholar
  63. 63.
    Matsuo S, Ichida S, Takizawa H, et al. In vivo effects of monoclonal antibodies that functionally inhibit complement regulatory proteins in rats. J Exp Med. 1994;180:1619-1627.PubMedGoogle Scholar
  64. 64.
    Xu C, Mao D, Holers VM, Palanca B, Cheng AM, Molina H. A critical role for murine complement regulator crry in fetomaternal tolerance. Science. 2000;287:498-501.PubMedGoogle Scholar
  65. 65.
    Jerzak M, Bischof P. Apoptosis in the first trimester human placenta: the role in maintaining immune privilege at the maternal-foetal interface and in the trophoblast remodelling. Eur J Obstet Gynecol Reprod Biol. 2002;100:138-142.PubMedGoogle Scholar
  66. 66.
    Holmes CH, Simpson KL, Wainwright SD, et al. Preferential expression of the complement regulatory protein decay accelerating factor at the fetomaternal interface during human pregnancy. J Immunol. 1990;144:3099-3105.PubMedGoogle Scholar
  67. 67.
    Dalmasso AP, Benson BA, Johnson JS, Lancto C, Abrahamsen MS. Resistance against the membrane attack complex of complement induced in porcine endothelial cells with a Gal alpha(1-3)Gal binding lectin: up-regulation of CD59 expression. J Immunol. 2000;164:3764-3773.PubMedGoogle Scholar
  68. 68.
    Trundley A, Moffett A. Human uterine leukocytes and pregnancy. Tissue Antigens. 2004;63:1-12.PubMedGoogle Scholar
  69. 69.
    Manaster I, Mandelboim O. The unique properties of human NK cells in the uterine mucosa. Placenta. 2008;29(Suppl A):S60-S66.PubMedGoogle Scholar
  70. 70.
    Tabiasco J, Rabot M, Aguerre-Girr M, et al. Human decidual NK cells: unique phenotype and functional properties – a review. Placenta. 2006;27(Suppl A):S34-S39.PubMedGoogle Scholar
  71. 71.
    Wold AS, Arici A. Natural killer cells and reproductive failure. Curr Opin Obstet Gynecol. 2005;17:237-241.PubMedGoogle Scholar
  72. 72.
    Aluvihare VR, Betz AG. The role of regulatory T cells in alloantigen tolerance. Immunol Rev. 2006;212:330-343.PubMedGoogle Scholar
  73. 73.
    Terness P, Kallikourdis M, Betz AG, Rabinovich GA, Saito S, Clark DA. Tolerance signaling molecules and pregnancy: IDO, galectins, and the renaissance of regulatory T cells. Am J Reprod Immunol. 2007;58:238-254.PubMedGoogle Scholar
  74. 74.
    Laskarin G, Kammerer U, Rukavina D, Thomson AW, Fernandez N, Blois SM. Antigen-presenting cells and materno-fetal tolerance: an emerging role for dendritic cells. Am J Reprod Immunol. 2007;58:255-267.PubMedGoogle Scholar
  75. 75.
    Blois SM, Kammerer U, Alba Soto C, et al. Dendritic cells: key to fetal tolerance? Biol Reprod. 2007;77:590-598.PubMedGoogle Scholar
  76. 76.
    Bailo M, Soncini M, Vertua E, et al. Engraftment potential of human amnion and chorion cells derived from term placenta. Transplantation. 2004;78:1439-1448.PubMedGoogle Scholar
  77. 77.
    Wolbank S, Peterbauer A, Fahrner M, et al. Dose-dependent immunomodulatory effect of human stem cells from amniotic membrane: a comparison with human mesenchymal stem cells from adipose tissue. Tissue Eng. 2007;13:1173-1183.PubMedGoogle Scholar
  78. 78.
    Avila M, Espana M, Moreno C, Pena C. Reconstruction of ocular surface with heterologous limbal epithelium and amniotic membrane in a rabbit model. Cornea. 2001;20:414-420.PubMedGoogle Scholar
  79. 79.
    Kubo M, Sonoda Y, Muramatsu R, Usui M. Immunogenicity of human amniotic membrane in experimental xenotransplantation. Invest Ophthalmol Vis Sci. 2001;42:1539-1546.PubMedGoogle Scholar
  80. 80.
    Yuge I, Takumi Y, Koyabu K, et al. Transplanted human amniotic epithelial cells express connexin 26 and Na-K-adenosine triphosphatase in the inner ear. Transplantation. 2004;77:1452-1454.PubMedGoogle Scholar
  81. 81.
    Sankar V, Muthusamy R. Role of human amniotic epithelial cell transplantation in spinal cord injury repair research. Neuroscience. 2003;118:11-17.PubMedGoogle Scholar
  82. 82.
    Marcus AJ, Coyne TM, Black IB, Woodbury D. Fate of amnion-derived stem cells transplanted to the fetal rat brain: migration, survival and differentiation. J Cell Mol Med. 2007;12(4):1256-1264.Google Scholar
  83. 83.
    Magatti M, De Munari S, Vertua E, Gibelli L, Wengler GS, Parolini O. Human amnion mesenchyme harbors cells with allogeneic T-cell suppression and stimulation capabilities. Stem Cells. 2008;26:182-192.PubMedGoogle Scholar
  84. 84.
    Mikkola HK, Gekas C, Orkin SH, Dieterlen-Lievre F. Placenta as a site for hematopoietic stem cell development. Exp Hematol. 2005;33:1048-1054.PubMedGoogle Scholar
  85. 85.
    Palis J, Yoder MC. Yolk-sac hematopoiesis: the first blood cells of mouse and man. Exp Hematol. 2001;29:927-936.PubMedGoogle Scholar
  86. 86.
    Yao H, Liu B, Wang X, et al. Identification of high proliferative potential precursors with hemangioblastic activity in the mouse aorta-gonad- mesonephros region. Stem Cells. 2007;25:1423-1430.PubMedGoogle Scholar
  87. 87.
    Houssaint E. Differentiation of the mouse hepatic primordium. II. Extrinsic origin of the haemopoietic cell line. Cell Differ. 1981;10:243-252.PubMedGoogle Scholar
  88. 88.
    Caprioli A, Jaffredo T, Gautier R, Dubourg C, Dieterlen-Lievre F. Blood-borne seeding by hematopoietic and endothelial precursors from the allantois. Proc Natl Acad Sci USA. 1998;95:1641-1646.PubMedGoogle Scholar
  89. 89.
    Gekas C, Dieterlen-Lievre F, Orkin SH, Mikkola HK. The placenta is a niche for hematopoietic stem cells. Dev Cell. 2005;8:365-375.PubMedGoogle Scholar
  90. 90.
    Alvarez-Silva M, Belo-Diabangouaya P, Salaun J, Dieterlen-Lievre F. Mouse placenta is a major hematopoietic organ. Development. 2003;130:5437-5444.PubMedGoogle Scholar
  91. 91.
    Zeigler BM, Sugiyama D, Chen M, Guo Y, Downs KM, Speck NA. The allantois and chorion, when isolated before circulation or chorio-allantoic fusion, have hematopoietic potential. Development. 2006;133:4183-4192.PubMedGoogle Scholar
  92. 92.
    Ottersbach K, Dzierzak E. The murine placenta contains hematopoietic stem cells within the vascular labyrinth region. Dev Cell. 2005;8:377-387.PubMedGoogle Scholar
  93. 93.
    Lacaud G, Gore L, Kennedy M, et al. Runx1 is essential for hematopoietic commitment at the hemangioblast stage of development in vitro. Blood. 2002;100:458-466.PubMedGoogle Scholar
  94. 94.
    North T, Gu TL, Stacy T, et al. Cbfa2 is required for the formation of intra-aortic hematopoietic clusters. Development. 1999;126:2563-2575.PubMedGoogle Scholar
  95. 95.
    Rhodes KE, Gekas C, Wang Y, et al. The emergence of hematopoietic stem cells is initiated in the placental vasculature in the absence of circulation. Cell Stem Cell. 2008;2:252-263.PubMedGoogle Scholar
  96. 96.
    Parolini O, Alviano F, Bagnara GP, et al. Concise review: isolation and characterization of cells from human term placenta: outcome of the first international workshop on placenta derived stem cells. Stem Cells. 2008;26:300-311.PubMedGoogle Scholar
  97. 97.
    Parolini O, Soncini M. Human placenta: a source of progenitor/stem cells? J Reprod Med Endocrinol. 2006;3:117-126.Google Scholar
  98. 98.
    Wei JP, Zhang TS, Kawa S, et al. Human amnion-isolated cells normalize blood glucose in streptozotocin-induced diabetic mice. Cell Transplant. 2003;12:545-552.PubMedGoogle Scholar
  99. 99.
    Zhao P, Ise H, Hongo M, Ota M, Konishi I, Nikaido T. Human amniotic mesenchymal cells have some characteristics of cardiomyocytes. Transplantation. 2005;79:528-535.PubMedGoogle Scholar
  100. 100.
    Alviano F, Fossati V, Marchionni C, et al. Term Amniotic membrane is a high throughput source for multipotent ­mesenchymal stem cells with the ability to differentiate into endothelial cells in vitro. BMC Dev Biol. 2007;7:11.PubMedGoogle Scholar
  101. 101.
    Tamagawa T, Ishiwata I, Ishikawa H, Nakamura Y. Induced in vitro differentiation of neural-like cells from human amnion-derived fibroblast-like cells. Hum Cell. 2008;21:38-45.PubMedGoogle Scholar
  102. 102.
    Miki T, Mitamura K, Ross MA, Stolz DB, Strom SC. Identification of stem cell marker-positive cells by immunofluorescence in term human amnion. J Reprod Immunol. 2007;75(2):91-96.PubMedGoogle Scholar
  103. 103.
    Portmann-Lanz CB, Schoeberlein A, Huber A, et al. Placental mesenchymal stem cells as potential autologous graft for pre- and perinatal neuroregeneration. Am J Obstet Gynecol. 2006;194:664-673.PubMedGoogle Scholar
  104. 104.
    Sakuragawa N, Kakinuma K, Kikuchi A, et al. Human amnion mesenchyme cells express phenotypes of neuroglial progenitor cells. J Neurosci Res. 2004;78:208-214.PubMedGoogle Scholar
  105. 105.
    Tamagawa T, Oi S, Ishiwata I, Ishikawa H, Nakamura Y. Differentiation of mesenchymal cells derived from human amniotic membranes into hepatocyte-like cells in vitro. Hum Cell. 2007;20:77-84.PubMedGoogle Scholar
  106. 106.
    Ventura C, Cantoni S, Bianchi F, et al. Hyaluronan mixed esters of butyric and retinoic acid drive cardiac and endothelial fate in term placenta human mesenchymal stem cells and enhance cardiac repair in infarcted rat hearts. J Biol Chem. 2007;282:14243-14252.PubMedGoogle Scholar
  107. 107.
    Miki T, Lehmann T, Cai H, Stolz DB, Strom SC. Stem cell characteristics of amniotic epithelial cells. Stem Cells. 2005;23:1549-1559.PubMedGoogle Scholar
  108. 108.
    Ilancheran S, Michalska A, Peh G, Wallace EM, Pera M, Manuelpillai U. Stem cells derived from human fetal membranes display multi-lineage differentiation potential. Biol Reprod. 2007;77:577-588.PubMedGoogle Scholar
  109. 109.
    Tamagawa T, Ishiwata I, Saito S. Establishment and characterization of a pluripotent stem cell line derived from human amniotic membranes and initiation of germ layers in vitro. Hum Cell. 2004;17:125-130.PubMedGoogle Scholar
  110. 110.
    Miki T, Strom SC. Amnion-derived pluripotent/multipotent stem cells. Stem Cell Rev. 2006;2:133-142.PubMedGoogle Scholar
  111. 111.
    Toda A, Okabe M, Yoshida T, Nikaido T. The potential of amniotic membrane/amnion-derived cells for regeneration of various tissues. J Pharmacol Sci. 2007;105:215-228.PubMedGoogle Scholar
  112. 112.
    Sakuragawa N, Thangavel R, Mizuguchi M, Hirasawa M, Kamo I. Expression of markers for both neuronal and glial cells in human amniotic epithelial cells. Neurosci Lett. 1996;209:9-12.PubMedGoogle Scholar
  113. 113.
    Sakuragawa N, Misawa H, Ohsugi K, et al. Evidence for active acetylcholine metabolism in human amniotic epithelial cells: applicable to intracerebral allografting for neurologic disease. Neurosci Lett. 1997;232:53-56.PubMedGoogle Scholar
  114. 114.
    Elwan MA, Sakuragawa N. Evidence for synthesis and release of catecholamines by human amniotic epithelial cells. Neuroreport. 1997;8:3435-3438.PubMedGoogle Scholar
  115. 115.
    Ishii T, Ohsugi K, Nakamura S, et al. Gene expression of oligodendrocyte markers in human amniotic epithelial cells using neural cell-type-specific expression system. Neurosci Lett. 1999;268:131-134.PubMedGoogle Scholar
  116. 116.
    Uchida S, Inanaga Y, Kobayashi M, Hurukawa S, Araie M, Sakuragawa N. Neurotrophic function of conditioned medium from human amniotic epithelial cells. J Neurosci Res. 2000;62:585-590.PubMedGoogle Scholar
  117. 117.
    Koyano S, Fukui A, Uchida S, Yamada K, Asashima M, Sakuragawa N. Synthesis and release of activin and noggin by cultured human amniotic epithelial cells. Dev Growth Differ. 2002;44:103-112.PubMedGoogle Scholar
  118. 118.
    Tcheng M, Oliver L, Courtois Y, Jeanny JC. Effects of exogenous FGFs on growth, differentiation, and survival of chick neural retina cells. Exp Cell Res. 1994;212:30-35.PubMedGoogle Scholar
  119. 119.
    Schroeder A, Theiss C, Steuhl KP, Meller K, Meller D. Effects of the human amniotic membrane on axonal outgrowth of dorsal root ganglia neurons in culture. Curr Eye Res. 2007;32:731-738.PubMedGoogle Scholar
  120. 120.
    Kakishita K, Elwan MA, Nakao N, Itakura T, Sakuragawa N. Human amniotic epithelial cells produce dopamine and survive after implantation into the striatum of a rat model of Parkinson’s disease: a potential source of donor for transplantation therapy. Exp Neurol. 2000;165:27-34.PubMedGoogle Scholar
  121. 121.
    Kakishita K, Nakao N, Sakuragawa N, Itakura T. Implantation of human amniotic epithelial cells prevents the degeneration of nigral dopamine neurons in rats with 6-hydroxydopamine lesions. Brain Res. 2003;980:48-56.PubMedGoogle Scholar
  122. 122.
    Kong XY, Cai Z, Pan L, et al. Transplantation of human amniotic cells exerts neuroprotection in MPTP-induced Parkinson disease mice. Brain Res. 2008;1205:108-115.PubMedGoogle Scholar
  123. 123.
    Liu T, Wu J, Huang Q, et al. Human amniotic epithelial cells ameliorate behavioral dysfunction and reduce infarct size in the rat middle cerebral artery occlusion model. Shock. 2008;29:603-611.PubMedGoogle Scholar
  124. 124.
    Davila JC, Cezar GG, Thiede M, Strom S, Miki T, Trosko J. Use and application of stem cells in toxicology. Toxicol Sci. 2004;79:214-223.PubMedGoogle Scholar
  125. 125.
    Takashima S, Ise H, Zhao P, Akaike T, Nikaido T. Human amniotic epithelial cells possess hepatocyte-like characteristics and functions. Cell Struct Funct. 2004;29:73-84.PubMedGoogle Scholar
  126. 126.
    Sakuragawa N, Enosawa S, Ishii T, et al. Human amniotic epithelial cells are promising transgene carriers for allogeneic cell transplantation into liver. J Hum Genet. 2000;45:171-176.PubMedGoogle Scholar

Copyright information

© Springer London 2011

Authors and Affiliations

  1. 1.Centro di Ricerca E. MenniFondazione Poliambulanza – Istituto OspedalieroBresciaItaly

Personalised recommendations