Advertisement

Implications of Feto-maternal Cell Transfer in Normal Pregnancy

  • Carolyn Troeger
  • Olav Lapaire
  • Xiao Yan Zhong
  • Wolfgang Holzgreve
Chapter

Abstract

Traditionally, the placenta has been thought to be a well-built barrier that separates the genetically different mother and offspring. This has been studied and discussed by K.E. von Baer already in 1828 when he found separate vascular beds in dogs.1 In the following years, it has been suggested that there is communication between the placenta and the host mother, because syncytiotrophoblasts have been found in the lungs of women who died of eclampsia.2 Transplacental fetal “bleeding” was recognized only in cases with a significant placental trauma, e.g., car accident, amniocentesis, chorionic villous sampling, termination of pregnancy, and external version done for breech presentation.

Keywords

Maternal Blood Fetal Cell HELLP Syndrome Maternal Cell Microchimeric Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Baer KEv. Untersuchungen über die Gefässverbindungen zwischen Mutter und Frucht in den Säugetieren. Leipzig: Voss; 1828.Google Scholar
  2. 2.
    Schmorl G. Pathologisch-anatomische Untersuchungen über puerperale Eklampsie. Leipzig: FCW Vogel; 1893.Google Scholar
  3. 3.
    Pearlman MD, Tintinalli JE, Lorenz RP. Blunt trauma during pregnancy. N Engl J Med. 1990;323:1609-1613.PubMedCrossRefGoogle Scholar
  4. 4.
    Goodlin RC, Clewell WH. Sudden fetal death following diagnostic amniocentesis. Am J Obstet Gynecol. 1974;118:285-288.PubMedGoogle Scholar
  5. 5.
    Warren RC, Butler J, Morsman JM, et al. Does chorionic villus sampling cause feto-maternal haemorrhage? Lancet. 1985;1:691.PubMedCrossRefGoogle Scholar
  6. 6.
    Voigt JC, Britt RP. Feto-maternal haemorrhage in therapeutic abortion. BMJ. 1969;2:395-396.CrossRefGoogle Scholar
  7. 7.
    Pollack M, Montague ACW. Transplacental hemorrhage in postterm pregnancies. Am J Obstet Gynecol. 1968;102:383-387.PubMedGoogle Scholar
  8. 8.
    Kleihauer E, Braun H, Betke K. Demonstration von fetalem Hämoglobin in den Erythrocyten eines Blutausstriches. Klin Wochenschr. 1957;35:637-638.PubMedCrossRefGoogle Scholar
  9. 9.
    Mollison PL. Quantification of transplacental haemorrhage. BMJ. 1972;3:31-34. correction p. 115.PubMedCrossRefGoogle Scholar
  10. 10.
    Woodrow JC, Finn R. Transplacental haemorrhage. Br J Haematol. 1966;12:297-309.PubMedCrossRefGoogle Scholar
  11. 11.
    Leiberman JR, Mazor M, Cohen A. Detection of fetal blood. Am J Obstet Gynecol. 1989;60:60-64.Google Scholar
  12. 12.
    Taylor JF. Sensitization of Rh-negative daughters by their Rh-positive mothers. N Engl J Med. 1967;276:547-551.PubMedCrossRefGoogle Scholar
  13. 13.
    Rubinstein A, Goldstein H, Calvelli T, et al. Maternofetal transmission of human immunodeficiency virus-1: the role of antibodies to the V3 primary neutralizing domain. Pediatr Res. 1993;33:76-78.CrossRefGoogle Scholar
  14. 14.
    Bucher C, Stern M, Buser A, et al. Role of primacy of birth in HLA-identical sibling transplantation. Blood. 2007;110:468-469.PubMedCrossRefGoogle Scholar
  15. 15.
    Holzgreve W, Hahn S, Zhong XY, et al. Genetic communication between fetus and mother: short- and long-term consequences. Am J Obstet Gynecol. 2007;196:372-381.PubMedCrossRefGoogle Scholar
  16. 16.
    Cavell B. Transplacental metastasis of malignant melanoma. Report of a case. Acta Paediatr Suppl. 1963;146:37-40.CrossRefGoogle Scholar
  17. 17.
    Brodsky I, Baren M, Kahn SB, et al. Metastatic malignant melanoma from mother to fetus. Cancer. 1965;18:1048-1054.PubMedCrossRefGoogle Scholar
  18. 18.
    Jackisch C, Louwen F, Schwenkhagen A, et al. Lung cancer during pregnancy involving the products of conception and a review of the literature. Arch Gynecol Obstet. 2002;268:69-77.PubMedGoogle Scholar
  19. 19.
    Astigiano S, Damonte P, Fossati S, et al. Fate of embryonal carcinoma cells injected into postimplantation mouse embryos. Differentiation. 2005;73:484-490.PubMedCrossRefGoogle Scholar
  20. 20.
    Ma F. The benign transformation tendency of malignant tumor cells for intrauterine transplantation. Swiss Med Wkly. 2007;137:561.PubMedGoogle Scholar
  21. 21.
    Lemtis H, Hörmann G. Das Verhalten der Placentaschranke gegenüber Metastasen maligner Tumoren der Mutter. Arch Gynakol. 1965;202:471-473.PubMedCrossRefGoogle Scholar
  22. 22.
    Altshuler G. Toxoplasmosis as a cause of hydranencaphaly. Am J Dis Child. 1973;127:427-429.Google Scholar
  23. 23.
    Bittencourt AL. Congenital chagas disease. Am J Dis Child. 1976;130:97-103.PubMedGoogle Scholar
  24. 24.
    Bierman HR, Kelly K, Cordes F, et al. The influence of histamine upon the circulating leukocyte level in patients with the leukemias. Blood. 1956;11:709-719.PubMedGoogle Scholar
  25. 25.
    Schröder J. Transplacental passage of blood cells. J Med Genet. 1975;12:230-242.PubMedCrossRefGoogle Scholar
  26. 26.
    Chen CP, Lee MY, Huang JP, et al. Trafficking of ­multipotent mesenchymal stromal cells from maternal circulation through the placenta involves vascular endothelial growth factor receptor-1 and integrins. Stem cells. 2008;26:550-561.PubMedCrossRefGoogle Scholar
  27. 27.
    Lo YM, Lo ES, Watson N, et al. Two-way cell traffic between mother and fetus: biologic and clinical implications. Blood. 1996;88:4390-4395.PubMedGoogle Scholar
  28. 28.
    Lo YM, Lau TK, Chan LY, et al. Quantitative analysis of the bidirectional fetomaternal transfer of nucleated cells and plasma DNA. Clin Chem. 2000;46:1301-1309.PubMedGoogle Scholar
  29. 29.
    Bonney EA, Matzinger P. The maternal immune system’s interaction with circulating fetal cells. J Immunol. 1997;158:40-47.PubMedGoogle Scholar
  30. 30.
    Kadowaki J, Thompson RI, Zuelzer WW. XX-XY lymphoid chimaerism in congenital immunological deficiency syndrome with thymic alymphoplasia. Lancet. 1965;2:1152-1156.PubMedCrossRefGoogle Scholar
  31. 31.
    Githens JH, Muschenheim F, Fulginiti VA, et al. Thymic alymphoplasia with XX-XY lymphoid chimerism secondary to probable maternal-fetal transfusion. J Pediatr. 1969;75:87-94.PubMedCrossRefGoogle Scholar
  32. 32.
    Anderson CC, Matzinger P. Immunity or tolerance: opposite outcomes of microchimerism from skin grafts. Nat Med. 2001;7:80-87.PubMedCrossRefGoogle Scholar
  33. 33.
    Maloney S, Smith A, Furst DE, et al. Microchimerism of maternal origin persists into adult life. J Clin Invest. 1999;104:41-47.PubMedCrossRefGoogle Scholar
  34. 34.
    Wan W, Shimizu S, Ikawa H, et al. Maternal cell traffic bounds for immune modulation: tracking maternal H-2 alleles in spleens of baby mice by DNA fingerprinting. Immunology. 2002;107:261-267.PubMedCrossRefGoogle Scholar
  35. 35.
    Claas FH, Gijbels Y, van der Velden-de MJ, et al. Induction of B cell unresponsiveness to noninherited maternal HLA antigens during fetal life. Science. 1988;241:1815-1817.PubMedCrossRefGoogle Scholar
  36. 36.
    Andrassy J, Kusaka S, Jankowska-Gan E, et al. Tolerance to noninherited maternal MHC antigens in mice. J Immunol. 2003;171:5554-5561.PubMedGoogle Scholar
  37. 37.
    Vernochet C, Caucheteux SM, Kanellopoulos-Langevin C. Bi-directional cell trafficking between mother and fetus in mouse placenta. Placenta. 2007;28:639-649.PubMedCrossRefGoogle Scholar
  38. 38.
    Nelson GW, Martin MP, Gladman D, et al. Cutting edge: heterozygote advantage in autoimmune disease: hierarchy of protection/susceptibility conferred by HLA and killer Ig-like receptor combinations in psoriatic arthritis. J Immunol. 2004;173:4273-4276.PubMedGoogle Scholar
  39. 39.
    Kaplan J, Land S. Influence of maternal-fetal histocompatibility and MHC zygosity on maternal microchimerism. J Immunol. 2005;174:7123-7128.PubMedGoogle Scholar
  40. 40.
    Artlett CM, Welsh KI, Black CM, et al. Fetal-maternal HLA compatibility confers susceptibility to systemic sclerosis. Immunogenetics. 1997;47:17-22.PubMedCrossRefGoogle Scholar
  41. 41.
    Lambert NC, Evans PC, Hashizumi TL, et al. Cutting edge: persistent fetal microchimerism in T lymphocytes is associated with HLA-DQA1*0501: implications in autoimmunity. J Immunol. 2000;164:5545-5548.PubMedGoogle Scholar
  42. 42.
    Reed AM, Picornell YJ, Harwood A, et al. Chimerism in ­children with juvenile dermatomyositis. Lancet. 2000;356:2156-2157.PubMedCrossRefGoogle Scholar
  43. 43.
    Artlett CM, Ramos R, Jiminez SA, Childhood Myositis Heterogeneity Collaborative Group, et al. Chimeric cells of maternal origin in juvenile idiopathic inflammatory myopathies. Lancet. 2000;356:2155-2156.PubMedCrossRefGoogle Scholar
  44. 44.
    Buyon JP. Neonatal lupus and autoantibodies reactive with SSA/Ro-SSB/La. Scand J Rheumatol Suppl. 1998;107:23-30.PubMedGoogle Scholar
  45. 45.
    Schröder J, Schröder E, Cann HM. Fetal cells in the maternal blood. Lack of response of fetal cells in maternal blood to mitogens and mixed leukocyte culture. Hum Genet. 1977;38:91-97.PubMedCrossRefGoogle Scholar
  46. 46.
    Selypes A, Lorencz R. A noninvasive method for determination of the sex and karyotype of the fetus from the maternal blood. Hum Genet. 1988;79:357-359.PubMedCrossRefGoogle Scholar
  47. 47.
    Gänshirt-Ahlert D, Burschyk M, Garritsen HS, et al. Magnetic cell sorting and the transferrin receptor as potential means of prenatal diagnosis from maternal blood. Am J Obstet Gynecol. 1992;166:1350-1355.PubMedGoogle Scholar
  48. 48.
    Bianchi DW, Farina A, Weber W, et al. Significant fetal-maternal hemorrhage after termination of pregnancy: implications for development of fetal cell microchimerism. Am J Obstet Gynecol. 2001;184:703-706.PubMedCrossRefGoogle Scholar
  49. 49.
    de la Cruz F, Shifrin H, Elias S, et al. Prenatal diagnosis by use of fetal cells isolated from maternal blood. Am J Obstet Gynecol. 1995;173:1354-1355.PubMedGoogle Scholar
  50. 50.
    de la Cruz F, Shifrin H, Elias S, et al. Low false-positive rate of aneuploidy detection using fetal cells isolated from maternal blood. Fetal Diagn Ther. 1998;13:380.PubMedCrossRefGoogle Scholar
  51. 51.
    Bianchi DW, Simpson JL, Jackson LG, National Institute of Child Health and Development Fetal Cell Isolation Study, et al. Fetal gender and aneuploidy detection using fetal cells in maternal blood: analysis of NIFTY I data. Prenat Diagn. 2002;22:609-615.PubMedCrossRefGoogle Scholar
  52. 52.
    Troeger C, Zhong XY, Burgemeister R, et al. Approximately half of the erythroblasts in maternal blood are of fetal origin. Mol Hum Reprod. 1999;5:1162-1165.PubMedCrossRefGoogle Scholar
  53. 53.
    Troeger C, Holzgreve W, Hahn S. A comparison of different density gradients and antibodies for enrichment of fetal erythroblasts by MACS. Prenat Diagn. 1999;19:521-526.PubMedCrossRefGoogle Scholar
  54. 54.
    Prieto B, Cándenas M, Venta R, et al. Isolation of fetal nucleated red blood cells from maternal blood in normal and aneuploid pregnancies. Clin Chem Lab Med. 2002;40:667-672.PubMedCrossRefGoogle Scholar
  55. 55.
    Tutschek B, Reinhard J, Kögler G, et al. Clonal culture of fetal cells from maternal blood. Lancet. 2000;356:1736-1737.PubMedCrossRefGoogle Scholar
  56. 56.
    Campagnoli C, Roberts I, Kumar S, et al. Clonal culture of fetal cells from maternal blood. Lancet. 2001;357:962.PubMedCrossRefGoogle Scholar
  57. 57.
    Zimmermann B, Holzgreve W, Zhong XY, et al. Inability to clonally expand fetal progenitors from maternal blood. Fetal Diagn Ther. 2002;17:97-100.PubMedCrossRefGoogle Scholar
  58. 58.
    Bohmer RM, Zhen D, Bianchi DW. Differential development of fetal and adult haemoglobin profiles in colony culture: isolation of fetal nucleated red cells by two-colour fluorescence labelling. Br J Haemotol. 1998;103:351-360.Google Scholar
  59. 59.
    Bianchi DW. Fetomaternal cell traffic, pregnancy-associated progenitor cells, and autoimmune disease. Best Pract Res Clin Obstet Gynaecol. 2004;18:959-975.PubMedCrossRefGoogle Scholar
  60. 60.
    Adinolfi M, Camporese C, Carr T. Gene amplification to detect fetal nucleated cells in pregnant women. Lancet. 1989;2:328-329.PubMedCrossRefGoogle Scholar
  61. 61.
    Lo YM, Patel P, Wainscoat JS, et al. Prenatal sex determination by DNA amplification from maternal peripheral blood. Lancet. 1989;2:1363-1365.PubMedCrossRefGoogle Scholar
  62. 62.
    Babochkina T, Mergenthaler S, De Napoli G, et al. Numerous erythroblasts in maternal blood are impervious to fluorescent in situ hybridization analysis, a feature related to a dense compact nucleus with apoptotic character. Haematologica. 2005;90:740-745.PubMedGoogle Scholar
  63. 63.
    Hahn S, Garvin AM, Di Naro E, et al. Allele drop-out can occur in alleles differing by a single nucleotide and is not alleviated by preamplification or minor template increments. Genet Test. 1998;2:351-355.PubMedCrossRefGoogle Scholar
  64. 64.
    Lo YM, Corbetta N, Chamberlain PF, et al. Presence of fetal DNA in maternal plasma and serum. Lancet. 1997;350:485-487.PubMedCrossRefGoogle Scholar
  65. 65.
    Ariga H, Ohto H, Busch MP, et al. Kinetics of fetal cellular and cell-free DNA in the maternal circulation during and after pregnancy: implications for noninvasive prenatal diagnosis. Transfusion. 2001;41:1524-1530.PubMedCrossRefGoogle Scholar
  66. 66.
    Zhong XY, Holzgreve W, Hahn S. Cell-free fetal DNA in the maternal circulation does not stem from the transplacental passage of fetal erythroblasts. Mol Hum Reprod. 2002;8:864-870.PubMedCrossRefGoogle Scholar
  67. 67.
    Hahn S, Holzgreve W. Prenatal diagnosis using fetal cells and cell-free fetal DNA in maternal blood: what is currently feasible? Clin Obstet Gynecol. 2002;45:649-656. discussion 730–732.PubMedCrossRefGoogle Scholar
  68. 68.
    Alberry M, Maddocks D, Jones M, et al. Free fetal DNA in maternal plasma in anembryonic pregnancies: confirmation that the origin is the trophoblast. Prenat Diagn. 2007;27:415-418.PubMedCrossRefGoogle Scholar
  69. 69.
    Nelson JL. Microchimerism and autoimmune disease. N Engl J Med. 1998;338:1224-1225.PubMedCrossRefGoogle Scholar
  70. 70.
    Khosrotehrani K, Bianchi DW. Fetal cell microchimerism: helpful or harmful to the parous woman? Curr Opin Obstet Gynecol. 2003;15:195-199.PubMedCrossRefGoogle Scholar
  71. 71.
    Khosrotehrani K, Bianchi DW. Multi-lineage potential of fetal cells in maternal tissue: a legacy in reverse. J Cell Sci. 2005;118:1559-1563.PubMedCrossRefGoogle Scholar
  72. 72.
    Khosrotehrani K, Johnson KL, Guégan S, et al. Natural history of fetal cell microchimerism during and following murine pregnancy. J Reprod Immunol. 2005;66:1-12.PubMedCrossRefGoogle Scholar
  73. 73.
    Tan XW, Liao H, Sun L, et al. Fetal microchimerism in the maternal mouse brain: a novel population of fetal progenitor or stem cells able to cross the blood-brain barrier? Stem Cells. 2005;23:1443-1452.PubMedCrossRefGoogle Scholar
  74. 74.
    Khosrotehrani K, Reyes RR, Johnson KL, et al. Fetal cells participate over time in the response to specific types of murine maternal hepatic injury. Hum Reprod. 2007;22:654-661.PubMedCrossRefGoogle Scholar
  75. 75.
    Bianchi DW, Zickwolf GK, Weil GJ, et al. Male fetal progenitor cells persist in maternal blood for as long as 27 years postpartum. Proc Natl Acad Sci USA. 1996;93:705-708.PubMedCrossRefGoogle Scholar
  76. 76.
    Khosrotehrani K, Leduc M, Bachy V, et al. Pregnancy allows the transfer and differentiation of fetal lymphoid progenitors into functional T and B cells in mothers. J Immunol. 2008;180:889-897.PubMedGoogle Scholar
  77. 77.
    Holzgreve W, Ghezzi F, Di Naro E, et al. Disturbed feto-maternal cell traffic in preeclampsia. Obstet Gynecol. 1998;91:669-672.PubMedCrossRefGoogle Scholar
  78. 78.
    Bianchi DW, Williams JM, Sullivan LM, et al. PCR quantitation of fetal cells in maternal blood in normal and aneuploid pregnancies. Am J Hum Genet. 1997;61:822-829.PubMedCrossRefGoogle Scholar
  79. 79.
    Evans PC, Lambert N, Maloney S, et al. Long-term fetal microchimerism in peripheral blood mononuclear cell subsets in healthy women and women with scleroderma. Blood. 1999;93:2033-2037.PubMedGoogle Scholar
  80. 80.
    Lambert NC, Distler O, Müller-Ladner U, et al. HLA-DQA1*0501 is associated with diffuse systemic sclerosis in Caucasian men. Arthritis Rheum. 2000;43:2005-2010.PubMedCrossRefGoogle Scholar
  81. 81.
    Artlett CM, O’Hanlon TP, Lopez AM, et al. HLA-DQA1 is not an apparent risk factor for microchimerism in patients with various autoimmune diseases and in healthy individuals. Arthritis Rheum. 2003;48:2567-2572.PubMedCrossRefGoogle Scholar
  82. 82.
    Fanning PA, Jonsson JR, Clouston AD, et al. Detection of male DNA in the liver of female patients with primary biliary cirrhosis. J Hepatol. 2000;33:690-695.PubMedCrossRefGoogle Scholar
  83. 83.
    Schöniger-Hekele M, Müller C, Ackermann J, et al. Lack of evidence for involvement of fetal microchimerism in pathogenesis of primary biliary cirrhosis. Dig Dis Sci. 2002;47:1909-1914.PubMedCrossRefGoogle Scholar
  84. 84.
    Johnson KL, McAlindon TE, Mulcahy E, et al. Microchimerism in a female patient with systemic lupus erythematosus. Arthritis Rheum. 2001;44:2107-2111.PubMedCrossRefGoogle Scholar
  85. 85.
    Khosrotehrani K, Mery L, Aractingi S, et al. Absence of fetal cell microchimerism in cutaneous lesions of lupus erythematosus. Ann Rheum Dis. 2005;64:159-160.PubMedCrossRefGoogle Scholar
  86. 86.
    Sawaya HH, Jimenez SA, Artlett CM. Quantification of fetal microchimeric cells in clinically affected and unaffected skin of patients with systemic sclerosis. Rheumatology (Oxford). 2004;43:965-968.CrossRefGoogle Scholar
  87. 87.
    Christner PJ, Artlett CM, Conway RF, et al. Increased numbers of microchimeric cells of fetal origin are associated with dermal fibrosis in mice following injection of vinyl chloride. Arthritis Rheum. 2000;43:2598-2605.PubMedCrossRefGoogle Scholar
  88. 88.
    Gleicher N. Why much of the pathophysiology of preeclampsia-eclampsia must be of an autoimmune nature. Am J Obstet Gynecol. 2007;196(5):e1-7.PubMedCrossRefGoogle Scholar
  89. 89.
    Xia Y, Zhou CC, Ramin SM, et al. Angiotensin receptors, autoimmunity, and preeclampsia. J Immunol. 2007;179:3391-3395.PubMedGoogle Scholar
  90. 90.
    Weitgasser R, Spitzer D, Kartnig I, et al. Association of HELLP syndrome with autoimmune antibodies and glucose intolerance. Diabet Care. 2000;23:786-790.CrossRefGoogle Scholar
  91. 91.
    Alexander A, Samlowski WE, Grossman D, et al. Metastatic melanoma in pregnancy: risk of transplacental metastases in the infant. J Clin Oncol. 2003;21:2179-2186.PubMedCrossRefGoogle Scholar
  92. 92.
    Artlett CM, Cox LA, Ramos RC, et al. Increased microchimeric CD4+ T lymphocytes in peripheral blood from women with systemic sclerosis. Clin Immunol. 2002;103:303-308.PubMedCrossRefGoogle Scholar
  93. 93.
    Ohtsuka T, Miyamoto Y, Yamakage A, et al. Quantitative analysis of microchimerism in systemic sclerosis skin tissue. Arch Dermatol Res. 2001;293:387-391.PubMedCrossRefGoogle Scholar
  94. 94.
    Aractingi S, Berkane N, Bertheau P, et al. Fetal DNA in skin of polymorphic eruptions of pregnancy. Lancet. 1998;352:1898-1901.PubMedCrossRefGoogle Scholar
  95. 95.
    Srivatsa B, Srivatsa S, Johnson KL, et al. Microchimerism of presumed fetal origin in thyroid specimens from women: a case-control study. Lancet. 2001;358:2034-2038.PubMedCrossRefGoogle Scholar
  96. 96.
    Klintschar M, Schwaiger P, Mannweiler S, et al. Evidence of fetal microchimerism in Hashimoto’s thyroiditis. J Clin Endocrinol Metab. 2001;86:2494-2498.PubMedCrossRefGoogle Scholar
  97. 97.
    Ando T, Imaizumi M, Graves PN, et al. Intrathyroidal fetal microchimerism in Graves’ disease. J Clin Endocrinol Metab. 2002;87:3315-3320.PubMedCrossRefGoogle Scholar
  98. 98.
    Toda I, Kuwana M, Tsubota K, et al. Lack of evidence for an increased microchimerism in the circulation of patients with Sjögren’s syndrome. Ann Rheum Dis. 2001;60:248-253.PubMedCrossRefGoogle Scholar
  99. 99.
    Aractingi S, Sibilia J, Meignin V, et al. Presence of microchimerism in labial salivary glands in systemic sclerosis but not in Sjögren’s syndrome. Arthritis Rheum. 2002;46:1039-1043.PubMedCrossRefGoogle Scholar
  100. 100.
    Willer CJ, Dyment DA, Risch NJ, et al. Twin concordance and sibling recurrence rates in multiple sclerosis. Proc Natl Acad Sci USA. 2006;100:12877-12882.CrossRefGoogle Scholar
  101. 101.
    Mosca M, Curcio M, Lapi S, et al. Correlations of Y chromosome microchimerism with disease activity in patients with SLE: analysis of preliminary data. Ann Rheum Dis. 2003;62:651-654.PubMedCrossRefGoogle Scholar
  102. 102.
    Kremer Hovinga IC, Koopmans M, Baelde HJ, et al. Tissue chimerism in systemic lupus erythematosus is related to injury. Ann Rheum Dis. 2007;66:1568-1573.PubMedCrossRefGoogle Scholar

Copyright information

© Springer London 2011

Authors and Affiliations

  • Carolyn Troeger
    • 1
  • Olav Lapaire
  • Xiao Yan Zhong
  • Wolfgang Holzgreve
  1. 1.Laboratory for Prenatal MedicineUniversity Women´s HospitalBaselSwitzerland

Personalised recommendations