Skip to main content

Contrast Agents in Radiology

  • Chapter
  • First Online:

Abstract

To noninvasively diagnose disease and to describe response to therapy regarding morphology (e.g., size, structure) and (patho)physiology (e.g., blood perfusion) as well as cell function optimal image contrast is key. In our various body compartments in vivo contrast can be altered and improved by changing its intensity and distribution over time. This imaging fortune has been established by various contrast agents typically administered intravenously. Imaging methods in the field of ultrasound, magnetic resonance imaging, as well as computed tomography are continuously being improved by safe, valid, and efficient contrast agents. New targeted and specific agents are in the pipeline, but there are still a few more steps to go to reach market approval.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Barrett T, Brechbiel M, Bernardo M, Choyke PL. MRI of tumor angiogenesis. J Magn Reson Imaging. 2007;26:235–49.

    Article  PubMed  Google Scholar 

  2. Knopp MV, von Tengg-Kobligk H, Choyke PL. Functional magnetic resonance imaging in oncology for diagnosis and therapy monitoring. Mol Cancer Ther. 2003;2:419–26.

    CAS  PubMed  Google Scholar 

  3. Ah-See ML, Makris A, Taylor NJ, Harrison M, Richman PI, Burcombe RJ, Stirling JJ, d’Arcy JA, Collins DJ, Pittam MR, Ravichandran D, Padhani AR. Early changes in functional dynamic magnetic resonance imaging predict for pathologic response to neoadjuvant chemotherapy in primary breast cancer. Clin Cancer Res. 2008;14:6580–9.

    Article  CAS  PubMed  Google Scholar 

  4. Giesel FL, Choyke PL, Mehndiratta A, Zechmann CM, von Tengg-Kobligk H, Kayser K, Bischoff H, Hintze C, Delorme S, Weber MA, Essig M, Kauczor HU, Knopp MV. Pharmacokinetic analysis of malignant pleural mesothelioma-initial results of tumor microcirculation and its correlation to microvessel density (CD-34). Acad Radiol. 2008;15:563–70.

    Article  PubMed  Google Scholar 

  5. Heiland S, Erb G, Ziegler S, Krix M. Where contrast agent concentration really matters – a comparison of CT and MRI. Invest Radiol. 2010;45:529–37.

    Article  PubMed  Google Scholar 

  6. Knopp MV, Giesel FL, von Tengg-Kobligk H, Radeleff J. 3D MR colonography after exclusive intravenous administration of a hepatobiliary contrast agent. Eur Radiol. 2001;11:170.

    Google Scholar 

  7. Zech CJ, Herrmann KA, Reiser MF, Schoenberg SO. MR imaging in patients with suspected liver metastases: value of liver-specific contrast agent Gd-EOB-DTPA. Magn Reson Med Sci. 2007;6:43–52.

    Article  PubMed  Google Scholar 

  8. Davies BE, Kirchin MA, Bensel K, Lorusso V, Davies A, Parker JR, LaFrance ND. Pharmacokinetics and safety of gadobenate dimeglumine (multihance) in subjects with impaired liver function. Invest Radiol. 2002;37:299–308.

    Article  CAS  PubMed  Google Scholar 

  9. Katayama H. Survey of safety of clinical contrast media. Invest Radiol. 1990;25 Suppl 1:S7–10.

    Article  PubMed  Google Scholar 

  10. Pugh ND. Haemodynamic and rheological effects of contrast media: the role of viscosity and osmolality. Eur Radiol. 1996;6 Suppl 2:S13–5.

    Article  PubMed  Google Scholar 

  11. Rubin G, Rofsky N. CT and MR angiography – comprehensive vascular assessment. Philadelphia/Baltimore/New York/London/Buenos Aires/Hong Kong/Sydney/Tokyo: Wolters Kluwer/Lippincott Williams & Wilkins; 2009.

    Google Scholar 

  12. Knopp M, Kauczor HU, Knopp MA, Manella P, Delorme S, Wenz F. Effects of viscosity, cannula size and temperature in mechanical contrast media administration in CT and magnetic resonance tomography. Rofo. 1995;163:259–64.

    Article  CAS  PubMed  Google Scholar 

  13. Giesel FL, Essig M, Zabel-Du-Bois A, Bock M, von Tengg-Kobligk H, fshar-Omarei A, Debus J, Kauczor HU, Krix M. High-contrast computed tomographic angiography better detects residual intracranial arteriovenous malformations in long-term follow-up after radiotherapy than 1.5-Tesla time-of-flight magnetic resonance angiography. Acta Radiol. 2010;51:64–70.

    Article  PubMed  Google Scholar 

  14. Behrendt FF, Pietsch H, Jost G, Sieber MA, Keil S, Plumhans C, Seidensticker P, Gunther RW, Mahnken AH. Intra-individual comparison of different contrast media concentrations (300 mg, 370 mg and 400 mg iodine) in MDCT. Eur Radiol. 2010;20:1644–50.

    Article  PubMed  Google Scholar 

  15. Rutten A, Prokop M. Contrast agents in X-ray computed tomography and its applications in oncology. Anticancer Agents Med Chem. 2007;7:307–16.

    Article  CAS  PubMed  Google Scholar 

  16. Lauffer RB. MRI contrast agents: basic principles. In: Edelman R, Hesselink JR, Zlatkin MB, editors. Clinical magnetic resonance imaging. Philadelphia: WB Saunders Company; 1996. p. 177–91.

    Google Scholar 

  17. Koenig SH. From the relaxivity of Gd(DTPA)2- to everything else. Magn Reson Med. 1991;22:183–90.

    Article  CAS  PubMed  Google Scholar 

  18. Caravan P, Cloutier NJ, Greenfield MT, McDermid SA, Dunham SU, Bulte JW, Amedio Jr JC, Looby RJ, Supkowski RM, Horrocks Jr WD, McMurry TJ, Lauffer RB. The interaction of MS-325 with human serum albumin and its effect on proton relaxation rates. J Am Chem Soc. 2002;124:3152–62.

    Article  CAS  PubMed  Google Scholar 

  19. Weinmann HJ, Ebert W, Misselwitz B, Schmitt-Willich H. Tissue-specific MR contrast agents. Eur J Radiol. 2003;46:33–44.

    Article  PubMed  Google Scholar 

  20. Runge VM. Safety of magnetic resonance contrast media. Top Magn Reson Imaging. 2001;12:309–14.

    Article  CAS  PubMed  Google Scholar 

  21. Knopp MV, von Tengg-Kobligk H, Floemer F, Schoenberg SO. Contrast agents for MRA: future directions. J Magn Reson Imaging. 1999;10:314–6.

    Article  CAS  PubMed  Google Scholar 

  22. Giesel FL, Mehndiratta A, Essig M. High-relaxivity contrast-enhanced magnetic resonance neuroimaging: a review. Eur Radiol. 2010;20(10):2461–74.

    Article  PubMed  Google Scholar 

  23. Claussen C, Laniado M, Schorner W, Niendorf HP, Weinmann HJ, Fiegler W, Felix R. Gadolinium-DTPA in MR imaging of glioblastomas and intracranial metastases. AJNR Am J Neuroradiol. 1985;6:669–74.

    CAS  PubMed  Google Scholar 

  24. Runge VM, Schoerner W, Niendorf HP, Laniado M, Koehler D, Claussen C, Felix R, James Jr AE. Initial clinical evaluation of gadolinium DTPA for contrast-enhanced magnetic resonance imaging. Magn Reson Imaging. 1985;3:27–35.

    Article  CAS  PubMed  Google Scholar 

  25. Essig M, Weber MA, von Tengg-Kobligk H, Knopp MV, Yuh WT, Giesel FL. Contrast-enhanced magnetic resonance imaging of central nervous system tumors: agents, mechanisms, and applications. Top Magn Reson Imaging. 2006;17:89–106.

    Article  PubMed  Google Scholar 

  26. Provenzale JM, Mukundan S, Dewhirst M. The role of blood–brain barrier permeability in brain tumor imaging and therapeutics. AJR Am J Roentgenol. 2005;185:763–7.

    Article  PubMed  Google Scholar 

  27. Huppertz A, Rohrer M. Gadobutrol, a highly concentrated MR-imaging contrast agent: its physicochemical characteristics and the basis for its use in contrast-enhanced MR angiography and perfusion imaging. Eur Radiol. 2004;14 Suppl 5:M12–8.

    PubMed  Google Scholar 

  28. Rohrer M, Bauer H, Mintorovitch J, Requardt M, Weinmann HJ. Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Invest Radiol. 2005;40:715–24.

    Article  PubMed  Google Scholar 

  29. Tombach B, Bohndorf K, Brodtrager W, Claussen CD, Duber C, Galanski M, Grabbe E, Gortenuti G, Kuhn M, Gross-Fengels W, Hammerstingl R, Happel B, Heinz-Peer G, Jung G, Kittner T, Lagalla R, Lengsfeld P, Loose R, Oyen RH, Pavlica P, Pering C, Pozzi-Mucelli R, Persigehl T, Reimer P, Renken NS, Richter GM, Rummeny EJ, Schafer F, Szczerbo-Trojanowska M, Urbanik A, Vogl TJ, Hajek P. Comparison of 1.0 M gadobutrol and 0.5 M gadopentetate dimeglumine-enhanced MRI in 471 patients with known or suspected renal lesions: results of a multicenter, single-blind, interindividual, randomized clinical phase III trial. Eur Radiol. 2008;18:2610–9.

    Article  PubMed  Google Scholar 

  30. Essig M, Lodemann KP, Le-Huu M, Bruning R, Kirchin M, Reith W. Intraindividual comparison of gadobenate dimeglumine and gadobutrol for cerebral magnetic resonance perfusion imaging at 1.5 T. Invest Radiol. 2006;41:256–63.

    Article  CAS  PubMed  Google Scholar 

  31. Cavagna FM, Dapra M, Maggioni F, de Haen C, Felder E. Gd-BOPTA/Dimeg: experimental disease imaging. Magn Reson Med. 1991;22:329–33.

    Article  CAS  PubMed  Google Scholar 

  32. Grazioli L, Morana G, Kirchin MA, Schneider G. Accurate differentiation of focal nodular hyperplasia from hepatic adenoma at gadobenate dimeglumine-enhanced MR imaging: prospective study. Radiology. 2005;236:166–77.

    Article  PubMed  Google Scholar 

  33. Helmberger T, Semelka RC. New contrast agents for imaging the liver. Magn Reson Imaging Clin N Am. 2001;9:745–66, vi.

    CAS  PubMed  Google Scholar 

  34. Knopp MV, Runge VM, Essig M, Hartman M, Jansen O, Kirchin MA, Moeller A, Seeberg AH, Lodemann KP. Primary and secondary brain tumors at MR imaging: bicentric intraindividual crossover comparison of gadobenate dimeglumine and gadopentetate dimeglumine. Radiology. 2004;230:55–64.

    Article  PubMed  Google Scholar 

  35. Knopp MV, Schoenberg SO, Rehm C, Floemer F, von Tengg-Kobligk H, Bock M, Hentrich HR. Assessment of gadobenate dimeglumine for magnetic resonance angiography: phase I studies. Invest Radiol. 2002;37:706–15.

    Article  CAS  PubMed  Google Scholar 

  36. Herborn CU, Lauenstein TC, Ruehm SG, Bosk S, Debatin JF, Goyen M. Intraindividual comparison of gadopentetate dimeglumine, gadobenate dimeglumine, and gadobutrol for pelvic 3D magnetic resonance angiography. Invest Radiol. 2003;38:27–33.

    Article  CAS  PubMed  Google Scholar 

  37. von Tengg-Kobligk H, Floemer F, Knopp MV. Multiphasic MR angiography as an intra-individual comparison between the contrast agents Gd-DTPA, Gd-BOPTA, and Gd-BT-DO3A. Radiologe. 2003;43:171–8.

    Article  Google Scholar 

  38. Giesel FL, Runge V, Kirchin M, Mehndiratta A, Gerigk L, Corell B, von Gall C, Kauczor HU, Essig M. Three-dimensional multiphase time-resolved low-dose contrast-enhanced magnetic resonance angiography using TWIST on a 32-channel coil at 3 T: a quantitative and qualitative comparison of a conventional gadolinium chelate with a high-relaxivity agent. J Comput Assist Tomogr. 2010;34:678–83.

    Article  PubMed  Google Scholar 

  39. Kirchin MA, Pirovano GP, Spinazzi A. Gadobenate dimeglumine (Gd-BOPTA). An overview. Invest Radiol. 1998;33:798–809.

    Article  CAS  PubMed  Google Scholar 

  40. Planchamp C, Montet X, Frossard JL, Quadri R, Stieger B, Meier PJ, Ivancevic MK, Vallee JP, Terrier F, Pastor CM. Magnetic resonance imaging with hepatospecific contrast agents in cirrhotic rat livers. Invest Radiol. 2005;40:187–94.

    Article  CAS  PubMed  Google Scholar 

  41. Planchamp C, Hadengue A, Stieger B, Bourquin J, Vonlaufen A, Frossard JL, Quadri R, Becker CD, Pastor CM. Function of both sinusoidal and canalicular transporters controls the concentration of organic anions within hepatocytes. Mol Pharmacol. 2007;71:1089–97.

    Article  CAS  PubMed  Google Scholar 

  42. Giesel FL, von Tengg-Kobligk H, Wilkinson ID, Siegler P, von der Lieth CW, Frank M, Lodemann KP, Essig M. Influence of human serum albumin on longitudinal and transverse relaxation rates (r1 and r2) of magnetic resonance contrast agents. Invest Radiol. 2006;41:222–8.

    Article  CAS  PubMed  Google Scholar 

  43. de Haën C, Cabrini M, Akhnana L, Ratti D, Calabi L, Gozzini L. Gadobenate dimeglumine 0.5 M solution for injection (MultiHance) pharmaceutical formulation and physicochemical properties of a new magnetic resonance imaging contrast medium. J Comput Assist Tomogr. 1999;23 Suppl 1:S161–8.

    Article  PubMed  Google Scholar 

  44. Cotton F, Hermier M. The advantage of high relaxivity contrast agents in brain perfusion. Eur Radiol. 2006;16 Suppl 7:M16–26.

    Article  PubMed  Google Scholar 

  45. Saito K, Kotake F, Ito N, Ozuki T, Mikami R, Abe K, Shimazaki Y. Gd-EOB-DTPA enhanced MRI for hepatocellular carcinoma: quantitative evaluation of tumor enhancement in hepatobiliary phase. Magn Reson Med Sci. 2005;4:1–9.

    Article  PubMed  Google Scholar 

  46. Pastor CM. Gadoxetic acid-enhanced hepatobiliary phase MR imaging: cellular insight. Radiology. 2010;257:589.

    Article  PubMed  Google Scholar 

  47. Morana G, Salviato E, Guarise A. Contrast agents for hepatic MRI. Cancer Imaging. 2007;7(Spec No A):S24–7.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Lauffer RB. Targeted relaxation enhancement agents for MRI. Magn Reson Med. 1991;22:339–42.

    Article  CAS  PubMed  Google Scholar 

  49. Caravan P. Protein-targeted gadolinium-based magnetic resonance imaging (MRI) contrast agents: design and mechanism of action. Acc Chem Res. 2009;42:851–62.

    Article  CAS  PubMed  Google Scholar 

  50. Goyen M, Edelman M, Perreault P, O’Riordan E, Bertoni H, Taylor J, Siragusa D, Sharafuddin M, Mohler III ER, Breger R, Yucel EK, Shamsi K, Weisskoff RM. MR angiography of aortoiliac occlusive disease: a phase III study of the safety and effectiveness of the blood-pool contrast agent MS-325. Radiology. 2005;236:825–33.

    Article  PubMed  Google Scholar 

  51. Essig M, Rohrer M, Giesel F, Tuttenberg J, Weber MA, Michaely H, Gerigk L, Voth M. Human brain tumor imaging with a protein-binding MR contrast agent: initial experience. Eur Radiol. 2010;20:218–26.

    Article  PubMed  Google Scholar 

  52. Lorusso V, Pascolo L, Fernetti C, Visigalli M, Anelli P, Tiribelli C. In vitro and in vivo hepatic transport of the magnetic resonance imaging contrast agent B22956/1: role of MRP proteins. Biochem Biophys Res Commun. 2002;293:100–5.

    Article  CAS  PubMed  Google Scholar 

  53. Bonnemain B. Contrast products in magnetic resonance imaging. Ann Pharm Fr. 1994;52:229–39.

    CAS  PubMed  Google Scholar 

  54. Chachuat A, Bonnemain B. European clinical experience with Endorem. A new contrast agent for liver MRI in 1000 patients. Radiologe. 1995;35:274–6.

    Google Scholar 

  55. Koenig SH, Kellar KE. Blood-pool contrast agents for MRI: a critical evaluation. Acad Radiol. 1998;5 Suppl 1:200–5.

    Article  Google Scholar 

  56. Koenig SH, Kellar KE. Theory of 1/T1 and 1/T2 NMRD profiles of solutions of magnetic nanoparticles. Magn Reson Med. 1995;34:227–33.

    Article  CAS  PubMed  Google Scholar 

  57. Hemmingsson A, Carlsten J, Ericsson A, Klaveness J, Sperber GO, Thuomas KA. Relaxation enhancement of the dog liver and spleen by biodegradable superparamagnetic particles in proton magnetic resonance imaging. Acta Radiol. 1987;28:703–5.

    Article  CAS  PubMed  Google Scholar 

  58. Stark DD, Weissleder R, Elizondo G, Hahn PF, Saini S, Todd LE, Wittenberg J, Ferrucci JT. Superparamagnetic iron oxide: clinical application as a contrast agent for MR imaging of the liver. Radiology. 1988;168:297–301.

    CAS  PubMed  Google Scholar 

  59. Reimer P, Tombach B, Daldrup H, Hesse T, Sander G, Balzer T, Shamsi K, Berns T, Rummeny EJ, Peters PE. New MR contrast media in liver diagnosis. Initial clinical results with hepatobiliary Eovist (gadolinium-EOB-DTPA) and RES-specific Resovist (SH U 555 A). Radiologe. 1996;36:124–33.

    Article  CAS  PubMed  Google Scholar 

  60. Mller M, Reimer P, Wiedermann D, Allkemper T, Marx C, Tombach B, Rummeny EJ, Shamsi K, Balzer T, Peters PE. T1-weighted dynamic MRI with new superparamagnetic iron oxide particles (Resovist): results of a phantom study as well as 25 patients. Rofo. 1998;168:228–36.

    Article  Google Scholar 

  61. Sigal R, Vogl T, Casselman J, Moulin G, Veillon F, Hermans R, Dubrulle F, Viala J, Bosq J, Mack M, Depondt M, Mattelaer C, Petit P, Champsaur P, Riehm S, Dadashitazehozi Y, De Jaegere T, Marchal G, Chevalier D, Lemaitre L, Kubiak C, Helmberger R, Halimi P. Lymph node metastases from head and neck squamous cell carcinoma: MR imaging with ultrasmall superparamagnetic iron oxide particles (Sinerem MR) – results of a phase-III multicenter clinical trial. Eur Radiol. 2002;12:1104–13.

    Article  CAS  PubMed  Google Scholar 

  62. Ruehm SG, Corot C, Vogt P, Kolb S, Debatin JF. Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic rabbits. Circulation. 2001;103:415–22.

    Article  CAS  PubMed  Google Scholar 

  63. Bremerich J, Bilecen D, Reimer P. MR angiography with blood pool contrast agents. Eur Radiol. 2007;17:3017–24.

    Article  PubMed  Google Scholar 

  64. Kellar KE, Fujii DK, Gunther W, Bjornerud A, Spiller M, Koenig SH. NC100150 Injection, a preparation of optimized iron oxide nanoparticles for positive-contrast MR angiography. J Magn Reson Imaging. 2000;11:488–94.

    Article  CAS  PubMed  Google Scholar 

  65. Taupitz M, Wagner S, Schnorr J, Kravec I, Pilgrimm H, Bergmann-Fritsch H, Hamm B. Phase I clinical evaluation of citrate-coated monocrystalline very small superparamagnetic iron oxide particles as a new contrast medium for magnetic resonance imaging. Invest Radiol. 2004;39:394–405.

    Article  CAS  PubMed  Google Scholar 

  66. Manninger SP, Muldoon LL, Nesbit G, Murillo T, Jacobs PM, Neuwelt EA. An exploratory study of ferumoxtran-10 nanoparticles as a blood–brain barrier imaging agent targeting phagocytic cells in CNS inflammatory lesions. AJNR Am J Neuroradiol. 2005;26:2290–300.

    PubMed  Google Scholar 

  67. Port M, et al. P792: a rapid clearance blood pool agent for magnetic resonance imaging: preliminary results. MAGMA Magn Reson Mater Phys Biol Med. 2001;12(2–3):121.

    CAS  Google Scholar 

  68. Bendszus M, Ladewig G, Jestaedt L, Misselwitz B, Solymosi L, Toyka K, Stoll G. Gadofluorine M enhancement allows more sensitive detection of inflammatory CNS lesions than T2-w imaging: a quantitative MRI study. Brain. 2008;131:2341–52.

    Article  PubMed  Google Scholar 

  69. Kauczor HU. Helium-3 imaging of pulmonary ventilation. Br J Radiol. 1998;71:701–3.

    CAS  PubMed  Google Scholar 

  70. Knopp MV, Balzer T, Esser M, Kashanian FK, Paul P, Niendorf HP. Assessment of utilization and pharmacovigilance based on spontaneous adverse event reporting of gadopentetate dimeglumine as a magnetic resonance contrast agent after 45 million administrations and 15 years of clinical use. Invest Radiol. 2006;41:491–9.

    Article  PubMed  Google Scholar 

  71. Edward M, Quinn JA, Burden AD, Newton BB, Jardine AG. Effect of different classes of gadolinium-based contrast agents on control and nephrogenic systemic fibrosis-derived fibroblast proliferation. Radiology. 2010;256(3):735–43.

    Article  PubMed  Google Scholar 

  72. Kiessling F, Huppert J, Zhang C, Jayapaul J, Zwick S, Woenne EC, Mueller MM, Zentgraf H, Eisenhut M, Addadi Y, Neeman M, Semmler W. RGD-labeled USPIO inhibits adhesion and endocytotic activity of alpha v beta3-integrin-expressing glioma cells and only accumulates in the vascular tumor compartment. Radiology. 2009;253:462–9.

    Article  PubMed  Google Scholar 

  73. Kiessling F, Morgenstern B, Zhang C. Contrast agents and applications to assess tumor angiogenesis in vivo by magnetic resonance imaging. Curr Med Chem. 2007;14:77–91.

    Article  CAS  PubMed  Google Scholar 

  74. Bumb A, Brechbiel MW, Choyke P. Macromolecular and dendrimer-based magnetic resonance contrast agents. Acta Radiol. 2010;51(7):751–67.

    Article  PubMed Central  PubMed  Google Scholar 

  75. Misselwitz B, Platzek J, Weinmann HJ. Early MR lymphography with gadofluorine M in rabbits. Radiology. 2004;231:682–8.

    Article  PubMed  Google Scholar 

  76. Giesel FL, Stroick M, Griebe M, Troster H, von der Lieth CW, Requardt M, Rius M, Essig M, Kauczor HU, Hennerici MG, Fatar M. Gadofluorine m uptake in stem cells as a new magnetic resonance imaging tracking method: an in vitro and in vivo study. Invest Radiol. 2006;41:868–73.

    Article  CAS  PubMed  Google Scholar 

  77. Barnhart J, Levene H, Villapando E, Maniquis J, Fernandez J, Rice S, Jablonski E, Gjoen T, Tolleshaug H. Characteristics of Albunex: air-filled albumin microspheres for echocardiography contrast enhancement. Invest Radiol. 1990;25 Suppl 1:S162–4.

    Article  PubMed  Google Scholar 

  78. Shaw LJ, Gillam L, Feinstein S, Dent J, Plotnick G. Use of an intravenous contrast agent (Optison) to enhance echocardiography: efficacy and cost implications. Optison Multicenter Study Group. Am J Manag Care. 1998;4(Spec No):SP169–76.

    PubMed  Google Scholar 

  79. Bhutani MS, Hoffman BJ, van Velse A, Hawes RH. Contrast-enhanced endoscopic ultrasonography with galactose microparticles: SHU508 A (Levovist). Endoscopy. 1997;29:635–9.

    Article  CAS  PubMed  Google Scholar 

  80. Schneider M. SonoVue, a new ultrasound contrast agent. Eur Radiol. 1999;9 Suppl 3:S347–8.

    Article  PubMed  Google Scholar 

  81. Kitzman DW, Goldman ME, Gillam LD, Cohen JL, Aurigemma GP, Gottdiener JS. Efficacy and safety of the novel ultrasound contrast agent perflutren (definity) in patients with suboptimal baseline left ventricular echocardiographic images. Am J Cardiol. 2000;86:669–74.

    Article  CAS  PubMed  Google Scholar 

  82. Quaia E. Microbubble ultrasound contrast agents: an update. Eur Radiol. 2007;17:1995–2008.

    Article  PubMed  Google Scholar 

  83. Furlow B. Contrast-enhanced ultrasound. Radiol Technol. 2009;80:547S–61.

    PubMed  Google Scholar 

  84. Kiessling F, Huppert J, Palmowski M. Functional and molecular ultrasound imaging: concepts and contrast agents. Curr Med Chem. 2009;16:627–42.

    Article  CAS  PubMed  Google Scholar 

  85. Fisher NG, Christiansen JP, Leong-Poi H, Jayaweera AR, Lindner JR, Kaul S. Myocardial and microcirculatory kinetics of BR14, a novel third-generation intravenous ultrasound contrast agent. J Am Coll Cardiol. 2002;39:530–7.

    Article  CAS  PubMed  Google Scholar 

  86. Pochon S, Tardy I, Bussat P, Bettinger T, Brochot J, von Wronski M, Passantino L, Schneider M. BR55: a lipopeptide-based VEGFR2-targeted ultrasound contrast agent for molecular imaging of angiogenesis. Invest Radiol. 2010;45:89–95.

    Article  CAS  PubMed  Google Scholar 

  87. Runge VM, Knopp MV. Off-label use and reimbursement of contrast media in MR. J Magn Reson Imaging. 1999;10:489–95.

    Article  CAS  PubMed  Google Scholar 

  88. Torres A. The use of food and drug administration – approved medications for unlabeled (off-label) uses. The legal and ethical implications. Arch Dermatol. 1994;130:32–6.

    Article  CAS  PubMed  Google Scholar 

  89. Reimer P, Vosshenrich R. Off-label use of contrast agents. Eur Radiol. 2008;18:1096–101.

    Article  CAS  PubMed  Google Scholar 

  90. Siebner HR, von Grafin EH, Conrad B. Magnetic resonance ventriculography with gadolinium DTPA: report of two cases. Neuroradiology. 1997;39:418–22.

    Article  CAS  PubMed  Google Scholar 

  91. Ray DE, Cavanagh JB, Nolan CC, Williams SC. Neurotoxic effects of gadopentetate dimeglumine: behavioral disturbance and morphology after intracerebroventricular injection in rats. AJNR Am J Neuroradiol. 1996;17:365–73.

    CAS  PubMed  Google Scholar 

  92. Raine J. Off-label use of medicines – legal aspects. In: Thomsen HS, editor. Contrast media safety issues and ESUR guidelines. Berlin/Heidelberg/New York: Springer Science + Business Media; 2006. p. 5–8.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hendrik von Tengg-Kobligk MD, Dr. med., Priv-Doz .

Editor information

Editors and Affiliations

Appendices

Appendix 15.1: Overview of Available Nonionic, Low-osmolar, and Iso-osmolar Contrast Media and Their Physicochemical Properties

Generic name (mg I/mL)

Trade name(s)

Manufacturer

Labeled indicationsa

Type, ionicity

Osmolality (mOsm/kg H2O)b, c

Viscosity at 37 °C (mPa × s)

Molecular weight (Da)

Iohexol (300/350)

Omnipaque

GE Healthcare

Myelography, cisternography, ventriculography (intrathecally), head, body, GI tract

LOCM nonionic (monomer)

672/844

6.3/10.4

821

Omnitrast

Bayer HealthCare Juste

Omnigraf

Iopentol (300)

Imagopaque

GE Healthcare

Whole body, angiography, GI tract

LOCM nonionic (monomer)

640/818

6.5/12.0

835

Iopamidol (300/370)

Isovue

Bracco

Head, whole body

LOCM nonionic (monomer)

616/796

4.7/9.4

777

Iopamiron

Iopamiron

Niopam

Solutrast

Iopromide (300/370)

Ultravist

Bayer HealthCare

Whole body

LOCM nonionic (monomer)

607/774

4.9/10.0

791

CT and angiography

Ioversol (300/350)

Optiray

Covidien

Head, body

LOCM nonionic (monomer)

651/792

5.5/9.0

807

Iobitridol (300/350)

Xenetix

Guerbet

Head, whole body

LOCM nonionic (monomer)

695/915

6.0/10.0

835

Ioxilan (300/350)

Oxilan

Guerbet

Head, body

LOCM nonionic (monomer)

585/695

5.1/8.1

791

Iomeprol (300/400)

Imeron

Bracco

Brain, body, cavernosography, myelography, urography

LOCM nonionic (monomer)

521/726

4.5/12.6

777

Iodixanol (320)

Visipaque

GE Healthcare

Head, body

IOCM nonionic (dimer)

290

11.8

1,550

  1. IOCM iso-osmolar contrast media, LOCM low-osmolar contrast media
  2. aLabeled indications may vary in different in countries/continents. Some CM are not even available in certain countries
  3. bOsmolality values differ with measuring technique
  4. cValues can be measured in a pure solution of the active substance in water or in the commercial product

Appendix 15.2: Physicochemical Properties of Tissue-specific and Nonspecific MR Contrast Agents

Lab name

Ionicity

Chemical structure

log K

log K

Osmolality osmol/kg H2O (37 °C)

Viscosity (mPa s) (37 °C)

WS r1

HP r1

HP r2

HP 3.0T13y r1/r2

[Gd-DTPA]2−

2−

Linear

22.14

17.74

1.962

2.92

3.83q

4.93z

6.33z

3.7/5.2

Gd-BT-DO3A

Neutral

Macrocyclic

21.81

17.11

1.602

5.02

3.62r

5.68z

6.58z

n.a.

Gd-HP-DO3A

Neutral

Macrocyclic

23.84

16.92

0.634

1.44

3.77q

4.67c

5.37c

3.7/5.7

[Gd-BOPTA]2−

2−

Linear

22.63

18.42

1.972

5.32

4.42

9.72z

12.52z

5.2/11.0

[Gd-DOTA]1−

1−

Macrocyclic

25.45

18.25

1.3510

2.010

3.57q

4.37c

5.07c

3.5/4.9

Gd-DTPA-BMA

Neutral

Linear

16.94

14.94

0.654

1.44

3.97r

4.67c

5.17c

4.0/5.6

Gd-DTPA-BMEA

Neutral

Linear

16.86

15.0

1.106

2.06

4.6

3.8c

n.a.

n.a.

Gd-EOB-DTPA

2−

Linear

23.59

18.711

0.8811

1.211

5.511m

8.6

n.a.

6.2/4.0

[Mn-DPDP]2−

2−

Linear

n.a.

n.a.

0.302

0.82

n.a.

2.312

4.012

n.a.

[Gadophostriamine trisodium]3−

3−

Linear

22.411

18.911

0.8311

1.811

6.611

47.213

57.613

9.9/73

SHU555A

Neutral

Coated with carboxydextran

0.3211

1.0311

23.613

1513

10113

3.3/160

AMI-25

Negat. charged

Coated with dextran

0.3410

1.310 (20 °C)

20.213

2414

10714

2.7/45

AMI-227

Negat. charged

Coated with dextran

0.3610

1.310 (25 °C)

2810

23.014

51.014

n.a.

[P792]1−

1−

Macrocyclic

0.3010

7.210

4210

4810

n.a.

n.a.

Gadomer-17

Neutral

Polyamide

0.3811

7.011

17.311

18.711

2311

13/25

  1. Relaxivitiesr1 and r2 (mM−1/s) were measured under the following conditions; note indicated exceptions: WS water solution, 0.47 T (20 MHz); pH 7.3; 0.15 M NaCl solution: q39 °C; r40 °C; tdistilled water; HP human plasma, 0.47 T (20 MHz); yplasma, 37 °C, zheparinized, 39 °C; e40 °C; f1.0 T; g1.5 T, kin PBS (37 °C), cin human serum (Seronorm®) at 39 °C; i39 °C, bovine plasma. jRheolab DSR 4000 (Paar Physica, LTD)
  2. logterm: thermodynamic stability for each ion and each chelate; logcond: conditional stability constant for each ion and each chelate: pH 7.4, 25.0 ± 0.1 °C, I = 0.1 M NaClO. (Per: Cacheris WP et al. The relationship between thermodynamics and the toxicity of gadolinium complexes. Magn Reson Imag 1990;8:467–481)
  3. Literature
  4.  1. Staks T, Schuhmann-Giampieri G, Frenzel T, Weinmann HJ, Lange L, Platzek J. Pharmacokinetics, dose proportionality, and tolerability of gadobutrol after single intravenous injection in healthy volunteers. Invest Radiol. 1994;29(7):709–15.
  5.  2. Package Insert, Bayer Healthcare, Germany.
  6.  3. Kirchin MA, Pirovano GP, Spinazzi A. Gadobenate dimeglumine (Gd-BOPTA). An overview. Invest Radiol. 1998;33(11):798–809.
  7.  4. Tweedle MF. The ProHance story: the making of a novel MRI contrast agent. Eur Radiol. 1997;7 Suppl 5:225–30.
  8.  5. Corot C, Idee JM, Hentsch AM, Santus R, Mallet C, Goulas V, Bonnemain B, Meyer D. Structure-activity relationship of macrocyclic and linear gadolinium chelates: investigation of transmetallation effect on the zinc-dependent metallopeptidase angiotensin-converting enzyme. J Magn Reson Imaging. 1998;8(3):695–702.
  9.  6. Rubin DL, Desser TS, Semelka R, Brown J, Nghiem HV, Stevens WR, Bluemke D, Nelson R, Fultz P, Reimer P, Ho V, Kristy RM, Pierro JA. A multicenter, randomized, double-blind study to evaluate the safety, tolerability, and efficacy of OptiMARK (gadoversetamide injection) compared with Magnevist (gadopentetate dimeglumine) in patients with liver pathology: results of a Phase III clinical trial. J Magn Reson Imaging. 1999;9(2):240–50.
  10.  7. de Haën C, Cabrini M, Akhnana L, Ratti D, Calabi L, Gozzini L. Gadobenate dimeglumine 0.5 M Solution for injection (MultiHance(R)): pharmaceutical formulation and physicochemical Properties of a new magnetic resonance imaging contrast medium. J Comput Assist Tomogr. 1999;23(1):S161–S168.
  11.  8. Benner T, Reimer P, Erb G, Schuierer G, Heiland S, Fischer C, Geens V, Sartor K, Forsting M. Cerebral MR perfusion imaging: first clinical application of a 1 M gadolinium chelate (Gadovist 1.0) in a double-blinded randomized dose-finding study. J Magn Reson Imaging. 2000;12(3):371–80.
  12.  9. Speck U. Contrast media: overview, use, and pharmaceutical aspects. 4th ed. Berlin: Springer Science + Business Media; 1994.
  13. 10. Guebert, Corot C. Personal Communication. 2000.
  14. 11. Bayer Healthcare. Personal Communication. 2001.
  15. 12. http://www.mr-tip.com/.
  16. 13. Modo MMJ, Bulte JWM. Molecular and cellular MR imaging. Boca Raton: CRC Press; 2007.
  17. 14. Rubin, GD, Rofsky NM. CT and MR angiography. Philadelphia: Lippincott Williams & Wilkins; 2009.

Appendix 15.3: Overview of Approved and Selected Experimental MR Contrast Media with Approval Status, Distribution, and Physicochemical Properties

Agent name

Lab name

Trade name

Company

Body part (Country)

MW (g/mol)

C (molar)

T ½ in blood (min)

Distribution

Gadopentetate dimeglumine

Gd-DTPA

Magnevist

Bayer HealthCare

CNS, WB (EU, USA, Japan)

938

0.5

~90

Extracellular

Gadobutrol

Gd-BT-DO3A

Gadovist

Bayer HealthCare

CNS (EU, USA)

605

1.0

~90

Extracellular

Gadoteridol

Gd-HP-DO3A

ProHance

Bracco

CNS, WB (EU, USA, Japan)

559

0.5

~90

Extracellular

Gadobenate dimeglumine

Gd-BOPTA

MultiHance

Bracco

CNS, liver (EU, USA)

1058

0.5

~90

Liver/extracellular

Gadoterate meglumine

Gd-DOTA

Dotarem

Guerbet

CNS, WB (EU)

558

0.5

~90

Extracellular

Gadodiamide

Gd-DTPA-BMA

Omniscan

GE Healthcare

CNS, WB (EU, USA, Japan)

574

0.5

~90

Extracellular

Gadoversetamide

Gd-DTPA-BMEA

OptiMARK

Covidien

CNS, liver (EU, USA)

662

0.5

~90

Extracellular

Gadoxetic acid disodium

Gd-EOB-DTPA

Primovist/Eovist

Bayer HealthCare

Liver (EU, USA)

726

0.25

~90

Liver/extracellular

Gadofosveset

Diphenylcyclo-hexyl phospho-diester-Gd-DTPA

ABLAVAR

Lantheus Medical Imaging, Inc.

USA, EU (abd, limbs)

957

0.25

224 ± 30

Intravascular/extracellular

SHU555 A

Ferucarbotran

Resovist/Cliavist

Bayer HealthCare

Discontinued

~700,000

0.5 M Fe/l

144–216/234–348

Liver/RES

AMI-25

Ferumoxides

Feridex IV/Endorem

Berlex/Guerbet

Liver (Japan, EU, USA)

n.a.

0.2 M Fe/l

144

Liver/RES

AMI-227

Ferumoxtran-10

Combidex/Sinerem

Cytogen/Guerbet

Discontinued

n.a.

0.36 M Fe/l

>1,000

LN, RES

Dendrimer

Gadomer-17

n.a.

Bayer HealthCare

Phase II

17,453

0.05

120–180

Intravascular

P792

Gadomeritol

Vistarem

Guerbet

Phase II

6,473

0.035

~120

Intravascular

  1. CNS central nervous system, EU European Union, USA United States of America, LN lymph nodes, RES reticuloendothelial system

Appendix 15.4: Overview of Available US Contrast Media with Current Approval and Distribution Status

Trade name(s)

Manufacturer

Labeled indicationsa

Shell composition

Gas

Availability

Albunex

Covidien

Cardiac

Albumin

Air

Discontinued since availability of Optison

Optison

GE Healthcare

Cardiac

Albumin

Perfluoropropane

US, EU

Echovist

Bayer HealthCare

Hysterosalpinx, cardiac

D-Galactose

Air

Discontinued since availability of Levovist

Levovist

Bayer HealthCare

Cardiovascular, focal liver lesions

Galactose/palmitic acid

Air

EU, Canada, Japan, Chinaa

Imagent

Targeson, Inc

Echocardiography

Surfactant

Perfluorohexane

China

Definity/Luminity

Lantheus Medical Imaging

Cardiac; liver, kidney

Liposome

Octafluoropropane

EMEA= EU

Definity = b

SonoVue

Bracco

CEUS

Surfactant/Phospholipid

Sulfur hexafluoride

EU

Sonazoid

Daiichi Sankyo

Liver, spleen, myocardial perfusion

Lipid stabilized

Perfluorocarbon

Japan

Br14

Bracco

Microcirculation, cardiac

Phospholipid

Perfluorocarbon

Phase III

Imagify

Acusphere

Cardiac

Poly-L-lactide co-glycide

Perflubutane

Phase III

Sonavist/Sonovist

GE Healthcare

Uptake by Kupffer cells in RES

Polycyanoacrylate

Air

RND

Echogen

Sonus

Heart

Surfactant

Dodecafluoropentane

European approval then withdrawn from market in 2000

  1. aLabeled indications may vary in different in countries/continents. Some CM are not even available in certain countries
  2. bIndia, North America, Australia and New Zealand, parts of the Pacific Rim, and several countries in the Middle East. RND research and development

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

von Tengg-Kobligk, H., Mehndiratta, A., Giesel, F.L. (2014). Contrast Agents in Radiology. In: Miller, C., Krasnow, J., Schwartz, L. (eds) Medical Imaging in Clinical Trials. Springer, London. https://doi.org/10.1007/978-1-84882-710-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-710-3_15

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-709-7

  • Online ISBN: 978-1-84882-710-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics