Contrast Agents in Radiology

  • Hendrik von Tengg-Kobligk
  • Amit Mehndiratta
  • Frederik L. Giesel


To noninvasively diagnose disease and to describe response to therapy regarding morphology (e.g., size, structure) and (patho)physiology (e.g., blood perfusion) as well as cell function optimal image contrast is key. In our various body compartments in vivo contrast can be altered and improved by changing its intensity and distribution over time. This imaging fortune has been established by various contrast agents typically administered intravenously. Imaging methods in the field of ultrasound, magnetic resonance imaging, as well as computed tomography are continuously being improved by safe, valid, and efficient contrast agents. New targeted and specific agents are in the pipeline, but there are still a few more steps to go to reach market approval.


Different contrast media Iodinated contrast media MR contrast media Ultrasound contrast media Imaging Imaging agents 


  1. 1.
    Barrett T, Brechbiel M, Bernardo M, Choyke PL. MRI of tumor angiogenesis. J Magn Reson Imaging. 2007;26:235–49.PubMedCrossRefGoogle Scholar
  2. 2.
    Knopp MV, von Tengg-Kobligk H, Choyke PL. Functional magnetic resonance imaging in oncology for diagnosis and therapy monitoring. Mol Cancer Ther. 2003;2:419–26.PubMedGoogle Scholar
  3. 3.
    Ah-See ML, Makris A, Taylor NJ, Harrison M, Richman PI, Burcombe RJ, Stirling JJ, d’Arcy JA, Collins DJ, Pittam MR, Ravichandran D, Padhani AR. Early changes in functional dynamic magnetic resonance imaging predict for pathologic response to neoadjuvant chemotherapy in primary breast cancer. Clin Cancer Res. 2008;14:6580–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Giesel FL, Choyke PL, Mehndiratta A, Zechmann CM, von Tengg-Kobligk H, Kayser K, Bischoff H, Hintze C, Delorme S, Weber MA, Essig M, Kauczor HU, Knopp MV. Pharmacokinetic analysis of malignant pleural mesothelioma-initial results of tumor microcirculation and its correlation to microvessel density (CD-34). Acad Radiol. 2008;15:563–70.PubMedCrossRefGoogle Scholar
  5. 5.
    Heiland S, Erb G, Ziegler S, Krix M. Where contrast agent concentration really matters – a comparison of CT and MRI. Invest Radiol. 2010;45:529–37.PubMedCrossRefGoogle Scholar
  6. 6.
    Knopp MV, Giesel FL, von Tengg-Kobligk H, Radeleff J. 3D MR colonography after exclusive intravenous administration of a hepatobiliary contrast agent. Eur Radiol. 2001;11:170.Google Scholar
  7. 7.
    Zech CJ, Herrmann KA, Reiser MF, Schoenberg SO. MR imaging in patients with suspected liver metastases: value of liver-specific contrast agent Gd-EOB-DTPA. Magn Reson Med Sci. 2007;6:43–52.PubMedCrossRefGoogle Scholar
  8. 8.
    Davies BE, Kirchin MA, Bensel K, Lorusso V, Davies A, Parker JR, LaFrance ND. Pharmacokinetics and safety of gadobenate dimeglumine (multihance) in subjects with impaired liver function. Invest Radiol. 2002;37:299–308.PubMedCrossRefGoogle Scholar
  9. 9.
    Katayama H. Survey of safety of clinical contrast media. Invest Radiol. 1990;25 Suppl 1:S7–10.PubMedCrossRefGoogle Scholar
  10. 10.
    Pugh ND. Haemodynamic and rheological effects of contrast media: the role of viscosity and osmolality. Eur Radiol. 1996;6 Suppl 2:S13–5.PubMedCrossRefGoogle Scholar
  11. 11.
    Rubin G, Rofsky N. CT and MR angiography – comprehensive vascular assessment. Philadelphia/Baltimore/New York/London/Buenos Aires/Hong Kong/Sydney/Tokyo: Wolters Kluwer/Lippincott Williams & Wilkins; 2009.Google Scholar
  12. 12.
    Knopp M, Kauczor HU, Knopp MA, Manella P, Delorme S, Wenz F. Effects of viscosity, cannula size and temperature in mechanical contrast media administration in CT and magnetic resonance tomography. Rofo. 1995;163:259–64.PubMedCrossRefGoogle Scholar
  13. 13.
    Giesel FL, Essig M, Zabel-Du-Bois A, Bock M, von Tengg-Kobligk H, fshar-Omarei A, Debus J, Kauczor HU, Krix M. High-contrast computed tomographic angiography better detects residual intracranial arteriovenous malformations in long-term follow-up after radiotherapy than 1.5-Tesla time-of-flight magnetic resonance angiography. Acta Radiol. 2010;51:64–70.PubMedCrossRefGoogle Scholar
  14. 14.
    Behrendt FF, Pietsch H, Jost G, Sieber MA, Keil S, Plumhans C, Seidensticker P, Gunther RW, Mahnken AH. Intra-individual comparison of different contrast media concentrations (300 mg, 370 mg and 400 mg iodine) in MDCT. Eur Radiol. 2010;20:1644–50.PubMedCrossRefGoogle Scholar
  15. 15.
    Rutten A, Prokop M. Contrast agents in X-ray computed tomography and its applications in oncology. Anticancer Agents Med Chem. 2007;7:307–16.PubMedCrossRefGoogle Scholar
  16. 16.
    Lauffer RB. MRI contrast agents: basic principles. In: Edelman R, Hesselink JR, Zlatkin MB, editors. Clinical magnetic resonance imaging. Philadelphia: WB Saunders Company; 1996. p. 177–91.Google Scholar
  17. 17.
    Koenig SH. From the relaxivity of Gd(DTPA)2- to everything else. Magn Reson Med. 1991;22:183–90.PubMedCrossRefGoogle Scholar
  18. 18.
    Caravan P, Cloutier NJ, Greenfield MT, McDermid SA, Dunham SU, Bulte JW, Amedio Jr JC, Looby RJ, Supkowski RM, Horrocks Jr WD, McMurry TJ, Lauffer RB. The interaction of MS-325 with human serum albumin and its effect on proton relaxation rates. J Am Chem Soc. 2002;124:3152–62.PubMedCrossRefGoogle Scholar
  19. 19.
    Weinmann HJ, Ebert W, Misselwitz B, Schmitt-Willich H. Tissue-specific MR contrast agents. Eur J Radiol. 2003;46:33–44.PubMedCrossRefGoogle Scholar
  20. 20.
    Runge VM. Safety of magnetic resonance contrast media. Top Magn Reson Imaging. 2001;12:309–14.PubMedCrossRefGoogle Scholar
  21. 21.
    Knopp MV, von Tengg-Kobligk H, Floemer F, Schoenberg SO. Contrast agents for MRA: future directions. J Magn Reson Imaging. 1999;10:314–6.PubMedCrossRefGoogle Scholar
  22. 22.
    Giesel FL, Mehndiratta A, Essig M. High-relaxivity contrast-enhanced magnetic resonance neuroimaging: a review. Eur Radiol. 2010;20(10):2461–74.PubMedCrossRefGoogle Scholar
  23. 23.
    Claussen C, Laniado M, Schorner W, Niendorf HP, Weinmann HJ, Fiegler W, Felix R. Gadolinium-DTPA in MR imaging of glioblastomas and intracranial metastases. AJNR Am J Neuroradiol. 1985;6:669–74.PubMedGoogle Scholar
  24. 24.
    Runge VM, Schoerner W, Niendorf HP, Laniado M, Koehler D, Claussen C, Felix R, James Jr AE. Initial clinical evaluation of gadolinium DTPA for contrast-enhanced magnetic resonance imaging. Magn Reson Imaging. 1985;3:27–35.PubMedCrossRefGoogle Scholar
  25. 25.
    Essig M, Weber MA, von Tengg-Kobligk H, Knopp MV, Yuh WT, Giesel FL. Contrast-enhanced magnetic resonance imaging of central nervous system tumors: agents, mechanisms, and applications. Top Magn Reson Imaging. 2006;17:89–106.PubMedCrossRefGoogle Scholar
  26. 26.
    Provenzale JM, Mukundan S, Dewhirst M. The role of blood–brain barrier permeability in brain tumor imaging and therapeutics. AJR Am J Roentgenol. 2005;185:763–7.PubMedCrossRefGoogle Scholar
  27. 27.
    Huppertz A, Rohrer M. Gadobutrol, a highly concentrated MR-imaging contrast agent: its physicochemical characteristics and the basis for its use in contrast-enhanced MR angiography and perfusion imaging. Eur Radiol. 2004;14 Suppl 5:M12–8.PubMedGoogle Scholar
  28. 28.
    Rohrer M, Bauer H, Mintorovitch J, Requardt M, Weinmann HJ. Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Invest Radiol. 2005;40:715–24.PubMedCrossRefGoogle Scholar
  29. 29.
    Tombach B, Bohndorf K, Brodtrager W, Claussen CD, Duber C, Galanski M, Grabbe E, Gortenuti G, Kuhn M, Gross-Fengels W, Hammerstingl R, Happel B, Heinz-Peer G, Jung G, Kittner T, Lagalla R, Lengsfeld P, Loose R, Oyen RH, Pavlica P, Pering C, Pozzi-Mucelli R, Persigehl T, Reimer P, Renken NS, Richter GM, Rummeny EJ, Schafer F, Szczerbo-Trojanowska M, Urbanik A, Vogl TJ, Hajek P. Comparison of 1.0 M gadobutrol and 0.5 M gadopentetate dimeglumine-enhanced MRI in 471 patients with known or suspected renal lesions: results of a multicenter, single-blind, interindividual, randomized clinical phase III trial. Eur Radiol. 2008;18:2610–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Essig M, Lodemann KP, Le-Huu M, Bruning R, Kirchin M, Reith W. Intraindividual comparison of gadobenate dimeglumine and gadobutrol for cerebral magnetic resonance perfusion imaging at 1.5 T. Invest Radiol. 2006;41:256–63.PubMedCrossRefGoogle Scholar
  31. 31.
    Cavagna FM, Dapra M, Maggioni F, de Haen C, Felder E. Gd-BOPTA/Dimeg: experimental disease imaging. Magn Reson Med. 1991;22:329–33.PubMedCrossRefGoogle Scholar
  32. 32.
    Grazioli L, Morana G, Kirchin MA, Schneider G. Accurate differentiation of focal nodular hyperplasia from hepatic adenoma at gadobenate dimeglumine-enhanced MR imaging: prospective study. Radiology. 2005;236:166–77.PubMedCrossRefGoogle Scholar
  33. 33.
    Helmberger T, Semelka RC. New contrast agents for imaging the liver. Magn Reson Imaging Clin N Am. 2001;9:745–66, vi.PubMedGoogle Scholar
  34. 34.
    Knopp MV, Runge VM, Essig M, Hartman M, Jansen O, Kirchin MA, Moeller A, Seeberg AH, Lodemann KP. Primary and secondary brain tumors at MR imaging: bicentric intraindividual crossover comparison of gadobenate dimeglumine and gadopentetate dimeglumine. Radiology. 2004;230:55–64.PubMedCrossRefGoogle Scholar
  35. 35.
    Knopp MV, Schoenberg SO, Rehm C, Floemer F, von Tengg-Kobligk H, Bock M, Hentrich HR. Assessment of gadobenate dimeglumine for magnetic resonance angiography: phase I studies. Invest Radiol. 2002;37:706–15.PubMedCrossRefGoogle Scholar
  36. 36.
    Herborn CU, Lauenstein TC, Ruehm SG, Bosk S, Debatin JF, Goyen M. Intraindividual comparison of gadopentetate dimeglumine, gadobenate dimeglumine, and gadobutrol for pelvic 3D magnetic resonance angiography. Invest Radiol. 2003;38:27–33.PubMedCrossRefGoogle Scholar
  37. 37.
    von Tengg-Kobligk H, Floemer F, Knopp MV. Multiphasic MR angiography as an intra-individual comparison between the contrast agents Gd-DTPA, Gd-BOPTA, and Gd-BT-DO3A. Radiologe. 2003;43:171–8.CrossRefGoogle Scholar
  38. 38.
    Giesel FL, Runge V, Kirchin M, Mehndiratta A, Gerigk L, Corell B, von Gall C, Kauczor HU, Essig M. Three-dimensional multiphase time-resolved low-dose contrast-enhanced magnetic resonance angiography using TWIST on a 32-channel coil at 3 T: a quantitative and qualitative comparison of a conventional gadolinium chelate with a high-relaxivity agent. J Comput Assist Tomogr. 2010;34:678–83.PubMedCrossRefGoogle Scholar
  39. 39.
    Kirchin MA, Pirovano GP, Spinazzi A. Gadobenate dimeglumine (Gd-BOPTA). An overview. Invest Radiol. 1998;33:798–809.PubMedCrossRefGoogle Scholar
  40. 40.
    Planchamp C, Montet X, Frossard JL, Quadri R, Stieger B, Meier PJ, Ivancevic MK, Vallee JP, Terrier F, Pastor CM. Magnetic resonance imaging with hepatospecific contrast agents in cirrhotic rat livers. Invest Radiol. 2005;40:187–94.PubMedCrossRefGoogle Scholar
  41. 41.
    Planchamp C, Hadengue A, Stieger B, Bourquin J, Vonlaufen A, Frossard JL, Quadri R, Becker CD, Pastor CM. Function of both sinusoidal and canalicular transporters controls the concentration of organic anions within hepatocytes. Mol Pharmacol. 2007;71:1089–97.PubMedCrossRefGoogle Scholar
  42. 42.
    Giesel FL, von Tengg-Kobligk H, Wilkinson ID, Siegler P, von der Lieth CW, Frank M, Lodemann KP, Essig M. Influence of human serum albumin on longitudinal and transverse relaxation rates (r1 and r2) of magnetic resonance contrast agents. Invest Radiol. 2006;41:222–8.PubMedCrossRefGoogle Scholar
  43. 43.
    de Haën C, Cabrini M, Akhnana L, Ratti D, Calabi L, Gozzini L. Gadobenate dimeglumine 0.5 M solution for injection (MultiHance) pharmaceutical formulation and physicochemical properties of a new magnetic resonance imaging contrast medium. J Comput Assist Tomogr. 1999;23 Suppl 1:S161–8.PubMedCrossRefGoogle Scholar
  44. 44.
    Cotton F, Hermier M. The advantage of high relaxivity contrast agents in brain perfusion. Eur Radiol. 2006;16 Suppl 7:M16–26.PubMedCrossRefGoogle Scholar
  45. 45.
    Saito K, Kotake F, Ito N, Ozuki T, Mikami R, Abe K, Shimazaki Y. Gd-EOB-DTPA enhanced MRI for hepatocellular carcinoma: quantitative evaluation of tumor enhancement in hepatobiliary phase. Magn Reson Med Sci. 2005;4:1–9.PubMedCrossRefGoogle Scholar
  46. 46.
    Pastor CM. Gadoxetic acid-enhanced hepatobiliary phase MR imaging: cellular insight. Radiology. 2010;257:589.PubMedCrossRefGoogle Scholar
  47. 47.
    Morana G, Salviato E, Guarise A. Contrast agents for hepatic MRI. Cancer Imaging. 2007;7(Spec No A):S24–7.PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Lauffer RB. Targeted relaxation enhancement agents for MRI. Magn Reson Med. 1991;22:339–42.PubMedCrossRefGoogle Scholar
  49. 49.
    Caravan P. Protein-targeted gadolinium-based magnetic resonance imaging (MRI) contrast agents: design and mechanism of action. Acc Chem Res. 2009;42:851–62.PubMedCrossRefGoogle Scholar
  50. 50.
    Goyen M, Edelman M, Perreault P, O’Riordan E, Bertoni H, Taylor J, Siragusa D, Sharafuddin M, Mohler III ER, Breger R, Yucel EK, Shamsi K, Weisskoff RM. MR angiography of aortoiliac occlusive disease: a phase III study of the safety and effectiveness of the blood-pool contrast agent MS-325. Radiology. 2005;236:825–33.PubMedCrossRefGoogle Scholar
  51. 51.
    Essig M, Rohrer M, Giesel F, Tuttenberg J, Weber MA, Michaely H, Gerigk L, Voth M. Human brain tumor imaging with a protein-binding MR contrast agent: initial experience. Eur Radiol. 2010;20:218–26.PubMedCrossRefGoogle Scholar
  52. 52.
    Lorusso V, Pascolo L, Fernetti C, Visigalli M, Anelli P, Tiribelli C. In vitro and in vivo hepatic transport of the magnetic resonance imaging contrast agent B22956/1: role of MRP proteins. Biochem Biophys Res Commun. 2002;293:100–5.PubMedCrossRefGoogle Scholar
  53. 53.
    Bonnemain B. Contrast products in magnetic resonance imaging. Ann Pharm Fr. 1994;52:229–39.PubMedGoogle Scholar
  54. 54.
    Chachuat A, Bonnemain B. European clinical experience with Endorem. A new contrast agent for liver MRI in 1000 patients. Radiologe. 1995;35:274–6.Google Scholar
  55. 55.
    Koenig SH, Kellar KE. Blood-pool contrast agents for MRI: a critical evaluation. Acad Radiol. 1998;5 Suppl 1:200–5.CrossRefGoogle Scholar
  56. 56.
    Koenig SH, Kellar KE. Theory of 1/T1 and 1/T2 NMRD profiles of solutions of magnetic nanoparticles. Magn Reson Med. 1995;34:227–33.PubMedCrossRefGoogle Scholar
  57. 57.
    Hemmingsson A, Carlsten J, Ericsson A, Klaveness J, Sperber GO, Thuomas KA. Relaxation enhancement of the dog liver and spleen by biodegradable superparamagnetic particles in proton magnetic resonance imaging. Acta Radiol. 1987;28:703–5.PubMedCrossRefGoogle Scholar
  58. 58.
    Stark DD, Weissleder R, Elizondo G, Hahn PF, Saini S, Todd LE, Wittenberg J, Ferrucci JT. Superparamagnetic iron oxide: clinical application as a contrast agent for MR imaging of the liver. Radiology. 1988;168:297–301.PubMedGoogle Scholar
  59. 59.
    Reimer P, Tombach B, Daldrup H, Hesse T, Sander G, Balzer T, Shamsi K, Berns T, Rummeny EJ, Peters PE. New MR contrast media in liver diagnosis. Initial clinical results with hepatobiliary Eovist (gadolinium-EOB-DTPA) and RES-specific Resovist (SH U 555 A). Radiologe. 1996;36:124–33.PubMedCrossRefGoogle Scholar
  60. 60.
    Mller M, Reimer P, Wiedermann D, Allkemper T, Marx C, Tombach B, Rummeny EJ, Shamsi K, Balzer T, Peters PE. T1-weighted dynamic MRI with new superparamagnetic iron oxide particles (Resovist): results of a phantom study as well as 25 patients. Rofo. 1998;168:228–36.CrossRefGoogle Scholar
  61. 61.
    Sigal R, Vogl T, Casselman J, Moulin G, Veillon F, Hermans R, Dubrulle F, Viala J, Bosq J, Mack M, Depondt M, Mattelaer C, Petit P, Champsaur P, Riehm S, Dadashitazehozi Y, De Jaegere T, Marchal G, Chevalier D, Lemaitre L, Kubiak C, Helmberger R, Halimi P. Lymph node metastases from head and neck squamous cell carcinoma: MR imaging with ultrasmall superparamagnetic iron oxide particles (Sinerem MR) – results of a phase-III multicenter clinical trial. Eur Radiol. 2002;12:1104–13.PubMedCrossRefGoogle Scholar
  62. 62.
    Ruehm SG, Corot C, Vogt P, Kolb S, Debatin JF. Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic rabbits. Circulation. 2001;103:415–22.PubMedCrossRefGoogle Scholar
  63. 63.
    Bremerich J, Bilecen D, Reimer P. MR angiography with blood pool contrast agents. Eur Radiol. 2007;17:3017–24.PubMedCrossRefGoogle Scholar
  64. 64.
    Kellar KE, Fujii DK, Gunther W, Bjornerud A, Spiller M, Koenig SH. NC100150 Injection, a preparation of optimized iron oxide nanoparticles for positive-contrast MR angiography. J Magn Reson Imaging. 2000;11:488–94.PubMedCrossRefGoogle Scholar
  65. 65.
    Taupitz M, Wagner S, Schnorr J, Kravec I, Pilgrimm H, Bergmann-Fritsch H, Hamm B. Phase I clinical evaluation of citrate-coated monocrystalline very small superparamagnetic iron oxide particles as a new contrast medium for magnetic resonance imaging. Invest Radiol. 2004;39:394–405.PubMedCrossRefGoogle Scholar
  66. 66.
    Manninger SP, Muldoon LL, Nesbit G, Murillo T, Jacobs PM, Neuwelt EA. An exploratory study of ferumoxtran-10 nanoparticles as a blood–brain barrier imaging agent targeting phagocytic cells in CNS inflammatory lesions. AJNR Am J Neuroradiol. 2005;26:2290–300.PubMedGoogle Scholar
  67. 67.
    Port M, et al. P792: a rapid clearance blood pool agent for magnetic resonance imaging: preliminary results. MAGMA Magn Reson Mater Phys Biol Med. 2001;12(2–3):121.Google Scholar
  68. 68.
    Bendszus M, Ladewig G, Jestaedt L, Misselwitz B, Solymosi L, Toyka K, Stoll G. Gadofluorine M enhancement allows more sensitive detection of inflammatory CNS lesions than T2-w imaging: a quantitative MRI study. Brain. 2008;131:2341–52.PubMedCrossRefGoogle Scholar
  69. 69.
    Kauczor HU. Helium-3 imaging of pulmonary ventilation. Br J Radiol. 1998;71:701–3.PubMedGoogle Scholar
  70. 70.
    Knopp MV, Balzer T, Esser M, Kashanian FK, Paul P, Niendorf HP. Assessment of utilization and pharmacovigilance based on spontaneous adverse event reporting of gadopentetate dimeglumine as a magnetic resonance contrast agent after 45 million administrations and 15 years of clinical use. Invest Radiol. 2006;41:491–9.PubMedCrossRefGoogle Scholar
  71. 71.
    Edward M, Quinn JA, Burden AD, Newton BB, Jardine AG. Effect of different classes of gadolinium-based contrast agents on control and nephrogenic systemic fibrosis-derived fibroblast proliferation. Radiology. 2010;256(3):735–43.PubMedCrossRefGoogle Scholar
  72. 72.
    Kiessling F, Huppert J, Zhang C, Jayapaul J, Zwick S, Woenne EC, Mueller MM, Zentgraf H, Eisenhut M, Addadi Y, Neeman M, Semmler W. RGD-labeled USPIO inhibits adhesion and endocytotic activity of alpha v beta3-integrin-expressing glioma cells and only accumulates in the vascular tumor compartment. Radiology. 2009;253:462–9.PubMedCrossRefGoogle Scholar
  73. 73.
    Kiessling F, Morgenstern B, Zhang C. Contrast agents and applications to assess tumor angiogenesis in vivo by magnetic resonance imaging. Curr Med Chem. 2007;14:77–91.PubMedCrossRefGoogle Scholar
  74. 74.
    Bumb A, Brechbiel MW, Choyke P. Macromolecular and dendrimer-based magnetic resonance contrast agents. Acta Radiol. 2010;51(7):751–67.PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    Misselwitz B, Platzek J, Weinmann HJ. Early MR lymphography with gadofluorine M in rabbits. Radiology. 2004;231:682–8.PubMedCrossRefGoogle Scholar
  76. 76.
    Giesel FL, Stroick M, Griebe M, Troster H, von der Lieth CW, Requardt M, Rius M, Essig M, Kauczor HU, Hennerici MG, Fatar M. Gadofluorine m uptake in stem cells as a new magnetic resonance imaging tracking method: an in vitro and in vivo study. Invest Radiol. 2006;41:868–73.PubMedCrossRefGoogle Scholar
  77. 77.
    Barnhart J, Levene H, Villapando E, Maniquis J, Fernandez J, Rice S, Jablonski E, Gjoen T, Tolleshaug H. Characteristics of Albunex: air-filled albumin microspheres for echocardiography contrast enhancement. Invest Radiol. 1990;25 Suppl 1:S162–4.PubMedCrossRefGoogle Scholar
  78. 78.
    Shaw LJ, Gillam L, Feinstein S, Dent J, Plotnick G. Use of an intravenous contrast agent (Optison) to enhance echocardiography: efficacy and cost implications. Optison Multicenter Study Group. Am J Manag Care. 1998;4(Spec No):SP169–76.PubMedGoogle Scholar
  79. 79.
    Bhutani MS, Hoffman BJ, van Velse A, Hawes RH. Contrast-enhanced endoscopic ultrasonography with galactose microparticles: SHU508 A (Levovist). Endoscopy. 1997;29:635–9.PubMedCrossRefGoogle Scholar
  80. 80.
    Schneider M. SonoVue, a new ultrasound contrast agent. Eur Radiol. 1999;9 Suppl 3:S347–8.PubMedCrossRefGoogle Scholar
  81. 81.
    Kitzman DW, Goldman ME, Gillam LD, Cohen JL, Aurigemma GP, Gottdiener JS. Efficacy and safety of the novel ultrasound contrast agent perflutren (definity) in patients with suboptimal baseline left ventricular echocardiographic images. Am J Cardiol. 2000;86:669–74.PubMedCrossRefGoogle Scholar
  82. 82.
    Quaia E. Microbubble ultrasound contrast agents: an update. Eur Radiol. 2007;17:1995–2008.PubMedCrossRefGoogle Scholar
  83. 83.
    Furlow B. Contrast-enhanced ultrasound. Radiol Technol. 2009;80:547S–61.PubMedGoogle Scholar
  84. 84.
    Kiessling F, Huppert J, Palmowski M. Functional and molecular ultrasound imaging: concepts and contrast agents. Curr Med Chem. 2009;16:627–42.PubMedCrossRefGoogle Scholar
  85. 85.
    Fisher NG, Christiansen JP, Leong-Poi H, Jayaweera AR, Lindner JR, Kaul S. Myocardial and microcirculatory kinetics of BR14, a novel third-generation intravenous ultrasound contrast agent. J Am Coll Cardiol. 2002;39:530–7.PubMedCrossRefGoogle Scholar
  86. 86.
    Pochon S, Tardy I, Bussat P, Bettinger T, Brochot J, von Wronski M, Passantino L, Schneider M. BR55: a lipopeptide-based VEGFR2-targeted ultrasound contrast agent for molecular imaging of angiogenesis. Invest Radiol. 2010;45:89–95.PubMedCrossRefGoogle Scholar
  87. 87.
    Runge VM, Knopp MV. Off-label use and reimbursement of contrast media in MR. J Magn Reson Imaging. 1999;10:489–95.PubMedCrossRefGoogle Scholar
  88. 88.
    Torres A. The use of food and drug administration – approved medications for unlabeled (off-label) uses. The legal and ethical implications. Arch Dermatol. 1994;130:32–6.PubMedCrossRefGoogle Scholar
  89. 89.
    Reimer P, Vosshenrich R. Off-label use of contrast agents. Eur Radiol. 2008;18:1096–101.PubMedCrossRefGoogle Scholar
  90. 90.
    Siebner HR, von Grafin EH, Conrad B. Magnetic resonance ventriculography with gadolinium DTPA: report of two cases. Neuroradiology. 1997;39:418–22.PubMedCrossRefGoogle Scholar
  91. 91.
    Ray DE, Cavanagh JB, Nolan CC, Williams SC. Neurotoxic effects of gadopentetate dimeglumine: behavioral disturbance and morphology after intracerebroventricular injection in rats. AJNR Am J Neuroradiol. 1996;17:365–73.PubMedGoogle Scholar
  92. 92.
    Raine J. Off-label use of medicines – legal aspects. In: Thomsen HS, editor. Contrast media safety issues and ESUR guidelines. Berlin/Heidelberg/New York: Springer Science + Business Media; 2006. p. 5–8.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Hendrik von Tengg-Kobligk
    • 1
    • 2
    • 3
  • Amit Mehndiratta
    • 4
  • Frederik L. Giesel
    • 5
  1. 1.Institute for Diagnostic, Interventional, and Pediatric Radiology (DIPR)Inselspital—University Hospital BernBernSwitzerland
  2. 2.Department of Diagnostic and Interventional Radiology (DIR)University Hospitals HeidelbergHeidelbergGermany
  3. 3.Department of RadiologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
  4. 4.Department of Engineering Science, Institute of Biomedical Engineering, Old Road Campus Research BuildingUniversity of OxfordHedington, OxfordshireUK
  5. 5.Department of Nuclear MedicineUniversity Hospitals HeidelbergHeidelbergGermany

Personalised recommendations