Nuclear Medicine: An Overview of Imaging Techniques, Clinical Applications and Trials

  • Amit Mehndiratta
  • Prabu Anandaraj
  • Christian M. Zechmann
  • Frederik L. Giesel


Nuclear medicine is a special division of nuclear physics that deals with the application of radioactivity in diagnostic and therapeutic medicine. This chapter will elaborate the basics of nuclear physics, concepts of nuclear imaging radioactive tracers used in nuclear imaging, and their mechanism. Radiation safety is a major concern while administering ionizing radiation for diagnostic or therapeutic purpose. An elaboration on the radiation safety measure for both patient and doctors followed by standardization of nuclear imaging in clinical practice is covered in this chapter. Following this multiple example will be discussed in cancer imaging of brain, lung, breast, GIT, ovary, prostate, etc. This chapter will conclude with future scope for research and outlook for clinical application in nuclear imaging.


Nuclear medicine PET PET/CT Tumor imaging Radiotracers 


  1. 1.
    Brownell GL, Burnham CA, Chesler DA. Lateral and transverse section imaging with the MGH positron camera. Prog Nucl Med. 1978;4:158–64.PubMedGoogle Scholar
  2. 2.
    Phelps ME, Hoffman EJ, Mullani NA, Ter-Pogossian MM. Application of annihilation coincidence detection to transaxial reconstruction tomography. J Nucl Med. 1975;16:210–24.PubMedGoogle Scholar
  3. 3.
    Giesel FL, Mehndiratta A, Locklin J, McAuliffe MJ, White S, Choyke PL, Knopp MV, Wood BJ, Haberkorn U, von Tengg-Kobligk H. Image fusion using CT, MRI and PET for treatment planning, navigation and follow up in percutaneous RFA. Exp Oncol. 2009;31(2):106–14.PubMedCentralPubMedGoogle Scholar
  4. 4.
    Gambhir SS, Czernin J, Schwimmer J, Silverman DH, Coleman RE, Phelps ME. A tabulated summary of the FDG PET literature. J Nucl Med. 2001;42:1S–93.PubMedGoogle Scholar
  5. 5.
    Gallagher BM, Ansari A, Atkins H, et al. Radiopharmaceuticals XXVII. 18F-labeled 2-deoxy-2-fluoro-d-glucose as a radiopharmaceutical for measuring regional myocardial glucose metabolism in vivo: tissue distribution and imaging studies in animals. J Nucl Med. 1977;18:990–6.PubMedGoogle Scholar
  6. 6.
    Reivich M, Kuhl D, Wolf A, et al. The [18F] fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ Res. 1979;44:127–37.PubMedCrossRefGoogle Scholar
  7. 7.
    Czernin J, Phelps ME. Positron emission tomography scanning: current and future applications. Ann Rev Med. 2002;53:89–112.PubMedCrossRefGoogle Scholar
  8. 8.
    DeGrado TR, Baldwin SW, Wang S, et al. Synthesis and evaluation of (18)F-labeled choline analogs as oncologic PET tracers. J Nucl Med. 2001;42:1805–14.PubMedGoogle Scholar
  9. 9.
    Bruehlmeier M, Roelcke U, Schubiger PA, Ametamey SM. Assessment of hypoxia and perfusion in human brain tumors using PET with 18F-fluoromisonidazole and 15O-H2O. J Nucl Med. 2004;45:1851–9.PubMedGoogle Scholar
  10. 10.
    Hicks RJ. Beyond FDG: novel PET tracers for cancer imaging. Cancer Imaging. 2004;4:22–4.PubMedCentralCrossRefGoogle Scholar
  11. 11.
    Otte A, Dierckx RA. Good clinical practice: a plea for nuclear medicine. Nucl Med Commun. 2005;26:561.PubMedCrossRefGoogle Scholar
  12. 12.
    Otte A, Maier-Lenz H, Dierckx RA. Good clinical practice: historical background and key aspects. Nucl Med Commun. 2005;26:563–74.PubMedCrossRefGoogle Scholar
  13. 13.
    De Vos FJ, De DM, Dierckx RA. The good laboratory practice and good clinical practice requirements for the production of radiopharmaceuticals in clinical research. Nucl Med Commun. 2005;26:575–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Zanzonico P. Routine quality control of clinical nuclear medicine instrumentation: a brief review. J Nucl Med. 2008;49:1114–31.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Strauss LG, Conti PS. The applications of PET in clinical oncology. J Nucl Med. 1991;32:623–48.PubMedGoogle Scholar
  16. 16.
    Bar-Shalom R, Valdivia AY, Blaufox MD. PET imaging in oncology. Semin Nucl Med. 2000;30:150–85.PubMedCrossRefGoogle Scholar
  17. 17.
    Tochon-Danguy HJ, Sachinidis JI, Egan GF, et al. Positron emission tomography: radioisotope and radiopharmaceutical production. Australas Phys Eng Sci Med. 1999;22:136–44.PubMedGoogle Scholar
  18. 18.
    Scott AM. Current status of positron emission tomography in oncology. Australas Radiol. 2002;46:154–62.PubMedCrossRefGoogle Scholar
  19. 19.
    Hicks RJ, Binns DS, Fawcett ME, et al. Positron emission tomography (PET): experience with a large-field-of-view three-dimensional PET scanner. Med J Aust. 1999;171:529–32.PubMedGoogle Scholar
  20. 20.
    Som P, Atkins HL, Bandoypadhyay D, et al. A fluorinated glucose analog, 2-fluoro-2-deoxy-D-glucose (F-18): nontoxic tracer for rapid tumor detection. J Nucl Med. 1980;21:670–5.PubMedGoogle Scholar
  21. 21.
    Reutens DC, Bittar RG, Tochon-Danguy H, Scott AM. Clinical applications of [(15)O] H(2)O PET activation studies. Clin Positron Imaging. 1999;2:145–52.PubMedCrossRefGoogle Scholar
  22. 22.
    Scott AM, Larson SM. Tumor imaging and therapy. Radiol Clin North Am. 1993;31:859–79.PubMedGoogle Scholar
  23. 23.
    Conti PS, Lilien DL, Hawley K, Keppler J, Grafton ST, Bading JR. PET and [18F]-FDG in oncology: a clinical update. Nucl Med Biol. 1996;23:717–35.PubMedCrossRefGoogle Scholar
  24. 24.
    Valk PE. Randomized controlled trials are not appropriate for imaging technology evaluation. J Nucl Med. 2000;41:1125–6.PubMedGoogle Scholar
  25. 25.
    Berlangieri SU, Scott AM, Knight SR, et al. F-18 fluorodeoxyglucose positron emission tomography in the non-invasive staging of non-small cell lung cancer. Eur J Cardiothorac Surg. 1999;16 Suppl 1:S25–30.PubMedCrossRefGoogle Scholar
  26. 26.
    Findlay M, Young H, Cunningham D, et al. Noninvasive monitoring of tumor metabolism using fluorodeoxyglucose and positron emission tomography in colorectal cancer liver metastases: correlation with tumor response to fluorouracil. J Clin Oncol. 1996;14:700–8.PubMedGoogle Scholar
  27. 27.
    Damian DL, Fulham MJ, Thompson E, Thompson JF. Positron emission tomography in the detection and management of metastatic melanoma. Melanoma Res. 1996;6:325–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Kiffer JD, Berlangieri SU, Scott AM, et al. The contribution of 18F-fluoro-2-deoxy-glucose positron emission tomographic imaging to radiotherapy planning in lung cancer. Lung Cancer. 1998;19:167–77.PubMedCrossRefGoogle Scholar
  29. 29.
    Shon IH, O’doherty MJ, Maisey MN. Positron emission tomography in lung cancer. Semin Nucl Med. 2002;32:240–71.PubMedCrossRefGoogle Scholar
  30. 30.
    Berlangieri SU, Scott AM. Metabolic staging of lung cancer. N Engl J Med. 2000;343:290–2.PubMedCrossRefGoogle Scholar
  31. 31.
    Di CG, Brooks RA. PET-FDG of untreated and treated cerebral gliomas. J Nucl Med. 1988;29:421–3.Google Scholar
  32. 32.
    Jeong HJ, Chung JK, Kim YK, et al. Usefulness of whole-body (18) F-FDG PET in patients with suspected metastatic brain tumors. J Nucl Med. 2002;43:1432–7.PubMedGoogle Scholar
  33. 33.
    Weber WA, Wester HJ, Grosu AL, et al. O-(2-[18F] fluoroethyl)-L-tyrosine and L-[methyl-11C] methionine uptake in brain tumors: initial results of a comparative study. Eur J Nucl Med. 2000;27:542–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Gupta N, Bradfield H. Role of positron emission tomography scanning in evaluating gastrointestinal neoplasms. Semin Nucl Med. 1996;26:65–73.PubMedCrossRefGoogle Scholar
  35. 35.
    Lowe VJ, Fletcher JW, Gobar L, et al. Prospective investigation of positron emission tomography in lung nodules. J Clin Oncol. 1998;16:1075–84.PubMedGoogle Scholar
  36. 36.
    Kratochwil C, Haberkorn U, Giesel FL. PET/CT for diagnostics and therapy stratification of lung cancer. Radiologe. 2010;50(8):684–91. doi:10.1007/s00117-009-1960-6. Review. German.PubMedCrossRefGoogle Scholar
  37. 37.
    Gould MK, Maclean CC, Kuschner WG, Rydzak CE, Owens DK. Accuracy of positron emission tomography for diagnosis of pulmonary nodules and mass lesions: a meta-analysis. JAMA. 2001;285:914–24.PubMedCrossRefGoogle Scholar
  38. 38.
    Vansteenkiste JF, Stroobants SG, De Leyn PR, et al. Mediastinal lymph node staging with FDG-PET scan in patients with potentially operable non-small cell lung cancer: a prospective analysis of 50 cases. Leuven Lung Cancer Group. Chest. 1997;112:1480–6.PubMedCrossRefGoogle Scholar
  39. 39.
    Valk PE, Pounds TR, Hopkins DM, et al. Staging non-small cell lung cancer by whole-body positron emission tomographic imaging. Ann Thorac Surg. 1995;60:1573–81.PubMedCrossRefGoogle Scholar
  40. 40.
    Bury T, Dowlati A, Paulus P, et al. Whole-body 18FDG positron emission tomography in the staging of non-small cell lung cancer. Eur Respir J. 1997;10:2529–34.PubMedCrossRefGoogle Scholar
  41. 41.
    Gambhir SS, Hoh CK, Phelps ME, Madar I, Maddahi J. Decision tree sensitivity analysis for cost-effectiveness of FDG-PET in the staging and management of non-small-cell lung carcinoma. J Nucl Med. 1996;37:1428–36.PubMedGoogle Scholar
  42. 42.
    Giesel F, Stefanova M, Schwartz LH, Afshar-Oromieh A, Eisenhut M, Haberkorn U, Kratochwil C. Impact of peptide receptor radionuclide therapy on the 68Ga-DOTATOC-PET/CT uptake in normal tissue. Q J Nucl Med Mol Imaging. 2013;57(2):171–6.PubMedGoogle Scholar
  43. 43.
    Giesel FL, Kratochwil C, Mehndiratta A, Wulfert S, Moltz JH, Zechmann CM, Kauczor HU, Haberkorn U, Ley S. Comparison of neuroendocrine tumor detection and characterization using DOTATOC-PET in correlation with contrast enhanced CT and delayed contrast enhanced MRI. Eur J Radiol. 2012;81(10):2820–5.PubMedCrossRefGoogle Scholar
  44. 44.
    Yasuda S, Fujii H, Nakahara T, et al. 18F-FDG PET detection of colonic adenomas. J Nucl Med. 2001;42:989–92.PubMedGoogle Scholar
  45. 45.
    Arulampalam TH, Costa DC, Bomanji JB, Ell PJ. The clinical application of positron emission tomography to colorectal cancer management. Q J Nucl Med. 2001;45:215–30.PubMedGoogle Scholar
  46. 46.
    Schiepers C, Penninckx F, De VN, et al. Contribution of PET in the diagnosis of recurrent colorectal cancer: comparison with conventional imaging. Eur J Surg Oncol. 1995;21:517–22.PubMedCrossRefGoogle Scholar
  47. 47.
    Heriot AG, Hicks RJ, Drummond EG, et al. Does positron emission tomography change management in primary rectal cancer? A prospective assessment. Dis Colon Rectum. 2004;47:451–8.PubMedCrossRefGoogle Scholar
  48. 48.
    Naumann R, Beuthien-Baumann B, Reiss A, et al. Substantial impact of FDG PET imaging on the therapy decision in patients with early-stage Hodgkin’s lymphoma. Br J Cancer. 2004;90:620–5.PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Delbeke D, Martin WH, Morgan DS, et al. 2-Deoxy-2-[F-18]fluoro-D-glucose imaging with positron emission tomography for initial staging of Hodgkin’s disease and lymphoma. Mol Imaging Biol. 2002;4:105–14.PubMedCrossRefGoogle Scholar
  50. 50.
    Jerusalem G, Beguin Y, Najjar F, et al. Positron emission tomography (PET) with 18F-fluorodeoxyglucose (18F-FDG) for the staging of low-grade non-Hodgkin’s lymphoma (NHL). Ann Oncol. 2001;12:825–30.PubMedCrossRefGoogle Scholar
  51. 51.
    Schoder H, Meta J, Yap C, et al. Effect of whole-body (18) F-FDG PET imaging on clinical staging and management of patients with malignant lymphoma. J Nucl Med. 2001;42:1139–43.PubMedGoogle Scholar
  52. 52.
    Foo SS, Mitchell PL, Berlangieri SU, Smith CL, Scott AM. Positron emission tomography scanning in the assessment of patients with lymphoma. Intern Med J. 2004;34:388–97.PubMedCrossRefGoogle Scholar
  53. 53.
    Spaepen K, Stroobants S, Dupont P, et al. Prognostic value of positron emission tomography (PET) with fluorine-18 fluorodeoxyglucose ([18F] FDG) after first-line chemotherapy in non-Hodgkin’s lymphoma: is [18F] FDG-PET a valid alternative to conventional diagnostic methods? J Clin Oncol. 2001;19:414–9.PubMedGoogle Scholar
  54. 54.
    Mikhaeel NG, Timothy AR, Hain SF, O’doherty MJ. 18-FDG-PET for the assessment of residual masses on CT following treatment of lymphomas. Ann Oncol. 2000;11 Suppl 1:147–50.PubMedCrossRefGoogle Scholar
  55. 55.
    Balch CM, Soong SJ, Gershenwald JE, et al. Prognostic factors analysis of 17,600 melanoma patients: validation of the American Joint Committee on Cancer melanoma staging system. J Clin Oncol. 2001;19:3622–34.PubMedGoogle Scholar
  56. 56.
    Mijnhout GS, Hoekstra OS, van Tulder MW, Teule GJ, Deville WL. Systematic review of the diagnostic accuracy of (18) F-fluorodeoxyglucose positron emission tomography in melanoma patients. Cancer. 2001;91:1530–42.PubMedCrossRefGoogle Scholar
  57. 57.
    Schwimmer J, Essner R, Patel A, et al. A review of the literature for whole-body FDG PET in the management of patients with melanoma. Q J Nucl Med. 2000;44:153–67.PubMedGoogle Scholar
  58. 58.
    Adams S, Baum RP, Stuckensen T, Bitter K, Hor G. Prospective comparison of 18F-FDG PET with conventional imaging modalities (CT, MRI, US) in lymph node staging of head and neck cancer. Eur J Nucl Med. 1998;25:1255–60.PubMedCrossRefGoogle Scholar
  59. 59.
    Hannah A, Scott AM, Tochon-Danguy H, et al. Evaluation of 18 F-fluorodeoxyglucose positron emission tomography and computed tomography with histopathologic correlation in the initial staging of head and neck cancer. Ann Surg. 2002;236:208–17.PubMedCrossRefGoogle Scholar
  60. 60.
    Paulus P, Sambon A, Vivegnis D, et al. 18FDG-PET for the assessment of primary head and neck tumors: clinical, computed tomography, and histopathological correlation in 38 patients. Laryngoscope. 1998;108:1578–83.PubMedCrossRefGoogle Scholar
  61. 61.
    Keyes Jr JW, Watson Jr NE, Williams III DW, Greven KM, McGuirt WF. FDG PET in head and neck cancer. AJR Am J Roentgenol. 1997;169:1663–9.PubMedCrossRefGoogle Scholar
  62. 62.
    Greven KM, Keyes Jr JW, Williams III DW, McGuirt WF, Joyce III WT. Occult primary tumors of the head and neck: lack of benefit from positron emission tomography imaging with 2-[F-18]fluoro-2-deoxy-D-glucose. Cancer. 1999;86:114–8.PubMedCrossRefGoogle Scholar
  63. 63.
    Farber LA, Benard F, Machtay M, et al. Detection of recurrent head and neck squamous cell carcinomas after radiation therapy with 2-18F-fluoro-2-deoxy-D-glucose positron emission tomography. Laryngoscope. 1999;109:970–5.PubMedCrossRefGoogle Scholar
  64. 64.
    Rege S, Safa AA, Chaiken L, Hoh C, Juillard G, Withers HR. Positron emission tomography: an independent indicator of radiocurability in head and neck carcinomas. Am J Clin Oncol. 2000;23:164–9.PubMedCrossRefGoogle Scholar
  65. 65.
    Wahl RL, Siegel BA, Coleman RE, Gatsonis CG. Prospective multicenter study of axillary nodal staging by positron emission tomography in breast cancer: a report of the staging breast cancer with PET Study Group. J Clin Oncol. 2004;22:277–85.PubMedCrossRefGoogle Scholar
  66. 66.
    Moon DH, Maddahi J, Silverman DH, Glaspy JA, Phelps ME, Hoh CK. Accuracy of whole-body fluorine-18-FDG PET for the detection of recurrent or metastatic breast carcinoma. J Nucl Med. 1998;39:431–5.PubMedGoogle Scholar
  67. 67.
    Bender H, Kirst J, Palmedo H, et al. Value of 18fluoro-deoxyglucose positron emission tomography in the staging of recurrent breast carcinoma. Anticancer Res. 1997;17:1687–92.PubMedGoogle Scholar
  68. 68.
    Luketich JD, Friedman DM, Weigel TL, et al. Evaluation of distant metastases in esophageal cancer: 100 consecutive positron emission tomography scans. Ann Thorac Surg. 1999;68:1133–6.PubMedCrossRefGoogle Scholar
  69. 69.
    Meltzer CC, Luketich JD, Friedman D, et al. Whole-body FDG positron emission tomographic imaging for staging esophageal cancer comparison with computed tomography. Clin Nucl Med. 2000;25:882–7.PubMedCrossRefGoogle Scholar
  70. 70.
    Lerut T, Flamen P. Role of FDG-PET scan in staging of cancer of the esophagus and gastroesophageal junction. Minerva Chir. 2002;57:837–45.PubMedGoogle Scholar
  71. 71.
    Fukunaga T, Okazumi S, Koide Y, Isono K, Imazeki K. Evaluation of esophageal cancers using fluorine-18-fluorodeoxyglucose PET. J Nucl Med. 1998;39:1002–7.PubMedGoogle Scholar
  72. 72.
    Einhorn N, Nilsson B, Sjovall K. Factors influencing survival in carcinoma of the ovary. Study from a well-defined Swedish population. Cancer. 1985;55:2019–25.PubMedCrossRefGoogle Scholar
  73. 73.
    Karlan BY, Hawkins R, Hoh C, et al. Whole-body positron emission tomography with 2-[18F]-fluoro-2-deoxy-D-glucose can detect recurrent ovarian carcinoma. Gynecol Oncol. 1993;51:175–81.PubMedCrossRefGoogle Scholar
  74. 74.
    Hubner KF, McDonald TW, Niethammer JG, Smith GT, Gould HR, Buonocore E. Assessment of primary and metastatic ovarian cancer by positron emission tomography (PET) using 2-[18F]deoxyglucose (2-[18F]FDG). Gynecol Oncol. 1993;51:197–204.PubMedCrossRefGoogle Scholar
  75. 75.
    Stephens AW, Gonin R, Hutchins GD, Einhorn LH. Positron emission tomography evaluation of residual radiographic abnormalities in postchemotherapy germ cell tumor patients. J Clin Oncol. 1996;14:1637–41.PubMedGoogle Scholar
  76. 76.
    Yeh S, Imbriaco M, Larson S, Garza D, Zhang JJ, Kalaigian H, Finn RD, Reddy D, Horowitz SM, Goldsmith SJ, Scher HI. Detection of bony metastases of androgen independent prostate cancer by FDG–PET. Nucl Med Biol. 1996;23:693–7.PubMedCrossRefGoogle Scholar
  77. 77.
    Shreve PD, Grossmann HB, Gross MD, Wahl RL. Metastatic prostate cancer: initial findings of PET with 2-deoxy-2-[F-18]-fluoro-D-glucose. Radiology. 1996;199:751–6.PubMedGoogle Scholar
  78. 78.
    Shvarts O, Han KR, Seltzer M, Pantuck AJ, Belldegrun AS. Positron emission tomography in urologic oncology. Cancer Control. 2002;9:335–42.PubMedGoogle Scholar
  79. 79.
    Effert PJ, Bares R, Handt S, Wolff JM, Bull D, Jakes G. Metabolic imaging of untreated prostate cancer by positron emission tomography with 18-fluorine-labeled deoxyglucose. J Urol. 1996;155:994–8.PubMedCrossRefGoogle Scholar
  80. 80.
    Hara T. 18F–fluorocholine: a new oncologic PET tracer. J Nucl Med. 2001;42:1815–6.PubMedGoogle Scholar
  81. 81.
    DeGrado TR, Coleman RE, Wang S, Baldwin SW, Orr MD, Robertson CN, Polascik TJ, Price DT. Synthesis and evaluation of 18F–labeled choline as an oncologic tracer for positron emission tomography: initial findings in prostate cancer. Cancer Res. 2000;61:110–7.Google Scholar
  82. 82.
    Beheshti M, Imamovic L, Broinger G, Vali R, Waldenberger P, Stoiber F, Nader M, Gruy B, Janetschek G, Langsteger W. 18F choline PET/CT in the preoperative staging of prostate cancer in patients with intermediate or high risk of extracapsular disease: a prospective study of 130 patients. Radiology. 2010;254:925–33.PubMedCrossRefGoogle Scholar
  83. 83.
    Oyama N, Miller TR, Dehdashti F, Siegel BA, Fischer KC, Michalski JM, Kibel AS, Andriole GL, Picus J, Welch MJ. 11C–acetate PET imaging of prostate cancer: detection of recurrent disease at PSA relapse. J Nucl Med. 2003;44:549–55.PubMedGoogle Scholar
  84. 84.
    Kato T, Tsukamoto E, Kuge Y, Takei T, Shiga T, Shinohara N, Katoh C, Nakada K, Tamaki N. Accumulation of [11C]acetate in normal prostate and benign prostatic hyperplasia: comparison with prostate cancer. Eur J Nucl Med. 2002;29:1492–5.CrossRefGoogle Scholar
  85. 85.
    Afshar-Oromieh A, Haberkorn U, Eder M, Eisenhut M, Zechmann CM. [68Ga]Gallium-labelled PSMA ligand as superior PET tracer for the diagnosis of prostate cancer: comparison with 18F-FECH. Eur J Nucl Med Mol Imaging. 2012;39(6):1085–6.PubMedCrossRefGoogle Scholar
  86. 86.
    Nunez R, Macapinlac HA, Yeung HWD, Akhurst T, Cai S, Osman I, Gonen M, Riedel E, Scher HI, Larson SM. Combined 18F–FDG and 11C–methionine PET scans in patients with newly progressive metastatic prostate cancer. J Nucl Med. 2002;43:46–55.PubMedGoogle Scholar
  87. 87.
    Hoffman JM, Welsh-Bohmer KA, Hanson M, et al. FDG PET imaging in patients with pathologically verified dementia. J Nucl Med. 2000;41:1920–8.PubMedGoogle Scholar
  88. 88.
    Andersson JD, Varnas K, Cselenyi Z, et al. Radiosynthesis of the candidate beta-amyloid radioligand [(11)C]AZD2184: positron emission tomography examination and metabolite analysis in cynomolgus monkeys. Synapse. 2010;64:733–41.PubMedCrossRefGoogle Scholar
  89. 89.
    O’Brien JT, Eagger S, Syed GM, Sahakian BJ, Levy R. A study of regional cerebral blood flow and cognitive performance in Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 1992;55:1182–7.PubMedCrossRefGoogle Scholar
  90. 90.
    Jagust W, Thisted R, Devous Sr MD, et al. SPECT perfusion imaging in the diagnosis of Alzheimer’s disease: a clinical-pathologic study. Neurology. 2001;56:950–6.PubMedCrossRefGoogle Scholar
  91. 91.
    Schmidt D, Zimmermann R, Lewczuk P, et al. Confirmation rate of blinded (99m)Tc-SPECT compared to neurochemical dementia biomarkers in CSF in patients with Alzheimer disease. J Neural Transm. 2010;117(9):1111–4.PubMedCrossRefGoogle Scholar
  92. 92.
    Devous Sr MD, Thisted RA, Morgan GF, Leroy RF, Rowe CC. SPECT brain imaging in epilepsy: a meta-analysis. J Nucl Med. 1998;39:285–93.PubMedGoogle Scholar
  93. 93.
    Asenbaum S, Baumgartner C. Nuclear medicine in the preoperative evaluation of epilepsy. Nucl Med Commun. 2001;22:835–40.PubMedCrossRefGoogle Scholar
  94. 94.
    Wadsak W, Mitterhauser M. Basics and principles of radiopharmaceuticals for PET/CT. Eur J Radiol. 2010;73:461–9.PubMedCrossRefGoogle Scholar
  95. 95.
    Tu Z, Mach RH. C-11 radiochemistry in cancer imaging applications. Curr Top Med Chem. 2010;10:1060–95.PubMedCrossRefGoogle Scholar
  96. 96.
    Schlyer DJ. PET tracers and radiochemistry. Ann Acad Med Singapore. 2004;33:146–54.PubMedGoogle Scholar
  97. 97.
    Rushton HG, Majd M. Dimercaptosuccinic acid renal scintigraphy for the evaluation of pyelonephritis and scarring: a review of experimental and clinical studies. J Urol. 1992;148:1726–32.PubMedGoogle Scholar
  98. 98.
    Fommei E, Volterrani D. Renal nuclear medicine. Semin Nucl Med. 1995;25:183–94.PubMedCrossRefGoogle Scholar
  99. 99.
    Palestro CJ. The current role of gallium imaging in infection. Semin Nucl Med. 1994;24:128–41.PubMedCrossRefGoogle Scholar
  100. 100.
    Love C, Palestro CJ. Radionuclide imaging of infection. J Nucl Med Technol. 2004;32:47–57.PubMedGoogle Scholar
  101. 101.
    Palestro CJ, Torres MA. Radionuclide imaging in orthopedic infections. Semin Nucl Med. 1997;27:334–45.PubMedCrossRefGoogle Scholar
  102. 102.
    Love C, Opoku-Agyemang P, Tomas MB, Pugliese PV, Bhargava KK, Palestro CJ. Pulmonary activity on labeled leukocyte images: physiologic, pathologic, and imaging correlation. Radiographics. 2002;22:1385–93.PubMedCrossRefGoogle Scholar
  103. 103.
    Palestro CJ, Torres MA. Radionuclide imaging of nonosseous infection. Q J Nucl Med. 1999;43:46–60.PubMedGoogle Scholar
  104. 104.
    Kotz D. Pediatric nuclear medicine: special issues, unique clinical studies. J Nucl Med. 1998;39:13N–4, 26N.Google Scholar
  105. 105.
    Jadvar H, Connolly LP, Fahey FH, Shulkin BL. PET and PET/CT in pediatric oncology. Semin Nucl Med. 2007;37:316–31.PubMedCrossRefGoogle Scholar
  106. 106.
    Schellingerhout D, Gelovani J. Clinical trials in a molecular world. Neuroimaging Clin N Am. 2006;16:681–94, ix.PubMedCrossRefGoogle Scholar
  107. 107.
    Mettler FA, Huda W, Yoshizumi TT, Mahesh M. Effective doses in radiology and diagnostic nuclear medicine: a catalog. Radiology. 2008;248(1):254–63.PubMedCrossRefGoogle Scholar
  108. 108.
    Wall BF, Hart D. Revised radiation doses for typical x-ray examinations. Br J Radiol. 1997;70(833):437–9.PubMedGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Amit Mehndiratta
    • 1
  • Prabu Anandaraj
    • 2
  • Christian M. Zechmann
    • 3
  • Frederik L. Giesel
    • 4
  1. 1.Department of Engineering Science, Institute of Biomedical Engineering, Old Road Campus Research BuildingUniversity of OxfordHedington, OxfordshireUK
  2. 2.Advanced Clinical ApplicationsGE HealthcareChennaiIndia
  3. 3.Department of Diagnostic Radiology and Nuclear MedicineRinecker Proton Therapy CenterMunichGermany
  4. 4.Department of Nuclear MedicineUniversity Hospital HeidelbergHeidelbergGermany

Personalised recommendations