Skip to main content

Nonlinear Contrast Intravascular Ultrasound

  • Chapter
  • First Online:
  • 2009 Accesses

Abstract

Intravascular ultrasound (IVUS) is an established clinical tool for assessing coronary artery atherosclerosis. Its use has contributed to an improved understanding of the natural history of atherosclerosis1 and, increasingly, IVUS data are used as an endpoint in therapeutic trials.2 For diagnostic purposes, it is employed as an adjunct to angiography, in order to provide additional insight into the extent and severity of atherosclerosis. It frequently reveals the presence of angiographically occult (i.e., non-stenotic) lesions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Schoenhagen P, Ziada KM, Vince DG, Nissen SE, Tuzcu EM. Arterial remodeling and coronary artery disease: the concept of “dilated” versus “obstructive” coronary atherosclerosis. J Am Coll Cardiol. 2001;38:297–306.

    Article  PubMed  CAS  Google Scholar 

  2. Nicholls SJ et al. Application of intravascular ultrasound in anti-atherosclerotic drug development. Nat Rev Drug Discov. 2006;5(6):485–492.

    Article  PubMed  CAS  Google Scholar 

  3. Nissen SE, Yock P. Intravascular ultrasound: novel pathophysiological insights and current clinical applications. Circulation. 2001;103(4):604–616.

    PubMed  CAS  Google Scholar 

  4. Glaser R et al. Clinical progression of incidental, asymptomatic lesions discovered during culprit vessel coronary intervention. Circulation. 2005;111(2):143–149.

    Article  PubMed  Google Scholar 

  5. Schaar JA et al. Terminology for high-risk and vulnerable coronary artery plaques. Report of a meeting on the vulnerable plaque, June 17 and 18, 2003, Santorini, Greece. Eur Heart J. 2004;25(12):1077–1082.

    Article  PubMed  Google Scholar 

  6. Waxman S, Ishibashi F, Muller JE. Detection and treatment of vulnerable plaques and vulnerable patients: novel approaches to prevention of coronary events. Circulation. 2006;114(22):2390–2411.

    Article  PubMed  Google Scholar 

  7. Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol. 2000;20(5): 1262–1275.

    Article  PubMed  CAS  Google Scholar 

  8. Virmani R, Burke AP, Farb A, Kolodgie FD. Pathology of the vulnerable plaque. J Am Coll Cardiol. 2006;47(8 suppl):C13-C18.

    Article  PubMed  CAS  Google Scholar 

  9. Schaar JA et al. Characterizing vulnerable plaque features with intravascular elastography. Circulation. 2003;108(21):2636–2641.

    Article  PubMed  Google Scholar 

  10. Nair A et al. Coronary plaque classification with intravascular ultrasound radiofrequency data analysis. Circulation. 2002;106(17):2200–2206.

    Article  PubMed  Google Scholar 

  11. Williams JK, Heistad DD. Structure and function of vasa vasorum. Trends Cardiovasc Med. 1996;6(2):53–57.

    Article  PubMed  CAS  Google Scholar 

  12. Kwon HM et al. Enhanced coronary vasa vasorum neovascularization in experimental hypercholesterolemia. J Clin Invest. 1998;101(8):1551–1556.

    Article  PubMed  CAS  Google Scholar 

  13. Zhang Y, Cliff WJ, Schoefl GI, Higgins G. Immunohistochemical study of intimal microvessels in coronary atherosclerosis. Am J Pathol. 1993;143(1):164–172.

    PubMed  CAS  Google Scholar 

  14. Moreno PR, Purushothaman KR, Fuster V, et al. Plaque neovascularization is increased in ruptured atherosclerotic lesions of human aorta: implications for plaque vulnerability. Circulation. 2004;110(14):2032–2038.

    Article  PubMed  Google Scholar 

  15. Kumamoto M, Nakashima Y, Sueishi K. Intimal neovascularization in human coronary atherosclerosis: its origin and pathophysiological significance. Hum Pathol. 1995;26(4):450–456.

    Article  PubMed  CAS  Google Scholar 

  16. de Boer OJ, van der Wal AC, Teeling P, Becker AE. Leucocyte recruitment in rupture prone regions of lipid-rich plaques: a prominent role for neovascularization? Cardiovasc Res. 1999;41(2):443–449.

    Article  PubMed  Google Scholar 

  17. Moulton KS et al. Inhibition of plaque neovascularization reduces macrophage accumulation and progression of advanced atherosclerosis. Proc Natl Acad Sci USA. 2001;100(8):4736–4741.

    Article  Google Scholar 

  18. Kolodgie FD et al. Intraplaque hemorrhage and progression of coronary atheroma. N Engl J Med. 2003;349(24):2316–2325.

    Article  PubMed  CAS  Google Scholar 

  19. Milei J et al. Carotid rupture and intraplaque hemorrhage: immunophenotype and role of cells involved. Am Heart J. 1998;136(6):1096–1105.

    Article  PubMed  CAS  Google Scholar 

  20. Moulton KS. Angiogenesis in atherosclerosis: gathering evidence beyond speculation. Curr Opin Lipidol. 2006;17(5):548–555.

    Article  PubMed  CAS  Google Scholar 

  21. Kerwin W et al. Quantitative magnetic resonance imaging analysis of neovasculature volume in carotid atherosclerotic plaque. Circulation. 2003;107(6):851–856.

    Article  PubMed  Google Scholar 

  22. Feinstein SB. The powerful microbubble: from bench to bedside, from intravascular indicator to therapeutic delivery system, and beyond. Am J Physiol Heart Circ Physiol. 2004;287(2):H450-H457.

    Article  PubMed  CAS  Google Scholar 

  23. Kruse DE, Ferrara KW. A new high resolution color flow system using an eigendecomposition-based adaptive filter for clutter rejection. IEEE Trans Ultrason Ferroelectr Freq Control. 2002;49(10):1384–1399.

    Article  PubMed  Google Scholar 

  24. Goertz DE, Yu JL, Kerbel RS, Burns PN, Foster FS. High-frequency 3-D color-flow imaging of the microcirculation. Ultrasound Med Biol. 2003;29(1):39–51.

    Article  PubMed  Google Scholar 

  25. Carlier S et al. Vasa vasorum imaging: a new window to the clinical detection of vulnerable atherosclerotic plaques. Curr Atheroscler Rep. 2005;7(2):164–169.

    Article  PubMed  Google Scholar 

  26. Kakadiaris I et al. Intravascular ultrasound-based imaging of vasa vasorum for the detection of vulnerable atherosclerotic plaque. J Am Coll Cardiol. 2006;47(4 suppl A):264A.

    Google Scholar 

  27. Vavuranakis M et al. A new method for assessment of plaque vulnerability based on vasa vasorum imaging, by using contrast-enhanced intravascular ultrasound and differential image analysis. Int J Cardiol. 2008;130(1):23–29.

    Article  PubMed  Google Scholar 

  28. O’Malley SM, Vavuranakis M, Naghavi M, Kakadiaris IA. Intravascular ultrasound-based imaging of vasa vasorum for the detection of vulnerable atherosclerotic plaque. Med Image Comput Comput Assist Interv. 2005;8(Pt 1):343–351.

    PubMed  Google Scholar 

  29. Shi WT, Forsberg F. Ultrasonic characterization of the nonlinear properties of contrast microbubbles. Ultrasound Med Biol. 2000;26(1):93–104.

    Article  PubMed  CAS  Google Scholar 

  30. Gorce JM, Arditi M, Schneider M. Influence of bubble size distribution on the echogenicity of ultrasound contrast agents: a study of Sonovue. Invest Radiol. 2000;35(11):661–671.

    Article  PubMed  CAS  Google Scholar 

  31. Sarkar K, Shi WT, Chatterjee D, Forsberg F. Characterization of ultrasound contrast microbubbles using in vitro experiments and viscous and viscoelastic interface models for encapsulation. J Acoust Soc Am. 2005;118(1):539–550.

    Article  PubMed  CAS  Google Scholar 

  32. Goertz DE, de Jong N, van der Steen AF. Attenuation and size distribution measurements of Definity and manipulated Definity populations. Ultrasound Med Biol. 2007;33(9):1376–1388.

    Article  PubMed  Google Scholar 

  33. Goertz DE, Frijlink ME, Voormolen MM, de Jong N, van der Steen AF. High frequency attenuation measurements of lipid encapsulated contrast agents. Ultrasonics. 2006;44(suppl 1):e131–e134.

    Article  PubMed  Google Scholar 

  34. Goertz DE et al. High frequency nonlinear B-scan imaging of microbubble contrast agents. IEEE Trans Ultrason Ferroelectr Freq Control. 2005;52(1):65–79.

    Article  PubMed  Google Scholar 

  35. Goertz DE, Frijlink ME, de Jong N, van der Steen AF. High frequency nonlinear scattering from a micrometer to submicrometer sized lipid encapsulated contrast agent. Ultrasound Med Biol. 2006;32(4):569–577.

    Article  PubMed  Google Scholar 

  36. Cheung K et al. In vitro characterization of the subharmonic ultrasound signal from Definity microbubbles at high frequencies. Phys Med Biol. 2008;53(5):1209–1223.

    Article  PubMed  CAS  Google Scholar 

  37. Bouakaz A, Versluis M, Borsboom J, de Jong N. Radial modulation of microbubbles for ultrasound contrast imaging. IEEE Trans Ultrason Ferroelectr Freq Control. 2007;54(11):2283–2290.

    Article  PubMed  Google Scholar 

  38. Masoy SE, Standal O, Nasholm P, Johansen TF, Angelsen B. SURF imaging: in vivo demonstration of an ultrasound contrast agent detection technique. IEEE Trans Ultrason Ferroelectr Freq Control. 2008;55(5):1112–1121.

    Article  PubMed  CAS  Google Scholar 

  39. Vos HJ, Goertz DE, de Jong N. Pulse repetition rate excitation of contrast agents. In: IEEE Ultrasonics Symposium; October 2–6, 2006; Vancouver:216–219.

    Google Scholar 

  40. Goertz DE, Frijlink ME, de Jong N, van der Steen AF. Nonlinear intravascular ultrasound contrast imaging. Ultrasound Med Biol. 2006;32(4):491–502.

    Article  PubMed  Google Scholar 

  41. Simpson DH, Chin CT, Burns PN. Pulse inversion Doppler: a new method for detecting nonlinear echoes from microbubble contrast agents. IEEE Trans Ultrason Ferroelectr Freq Control. 1999;46(2):372–382.

    Article  PubMed  CAS  Google Scholar 

  42. Granada JF, Feinstein SB. Imaging of the vasa vasorum. Nat Clin Pract Cardiovasc Med. 2008;5(suppl 2):S18-S25.

    Article  PubMed  Google Scholar 

  43. Frijlink ME, Goertz DE, Bouakaz A, van der Steen AF. A simulation study on tissue harmonic imaging with a single-element intravascular ultrasound catheter. J Acoust Soc Am. 2006;120(3):1723–1731.

    Article  PubMed  Google Scholar 

  44. Frijlink ME, Goertz DE, de Jong N, van der Steen AF. Pulse inversion sequences for mechanically scanned transducers. IEEE Trans Ultrason Ferroelectr Freq Control. 2008;55(10):2154–2163.

    Article  PubMed  Google Scholar 

  45. Frijlink ME et al. Harmonic intravascular ultrasound imaging with a dual-frequency catheter. Ultrasound Med Biol. 2006;32(11):1649–1654.

    Article  PubMed  Google Scholar 

  46. Vos HJ et al. Transducer for harmonic intravascular ultrasound imaging. IEEE Trans Ultrason Ferroelectr Freq Control. 2005;52(12):2418–2422.

    Article  PubMed  Google Scholar 

  47. Yuan Y, Rhee S, Jiang XN. 60 MHz PMN-PT based 1–3 composite transducer for IVUS imaging. In: IEEE Ultrasonics Symposium; November 2–5, 2008; Beijing:682–685.

    Google Scholar 

  48. Degertekin FL, Guldiken RO, Karaman M. Annular-ring CMUT arrays for forward-looking IVUS: transducer characterization and imaging. IEEE Trans Ultrason Ferroelectr Freq Control. 2006;53(3):474–482.

    Article  PubMed  Google Scholar 

  49. Schaar JA et al. Three-dimensional palpography of human coronary arteries. Ex vivo validation and in-patient evaluation. Herz. 2005;30(2):125–133.

    Article  PubMed  Google Scholar 

  50. Goertz DE et al. Contrast harmonic intravascular ultrasound: a feasibility study for vasa vasorum imaging. Invest Radiol. 2006;41(8):631–638.

    Article  PubMed  Google Scholar 

  51. Edelman ER, Nugent MA, Smith LT, Karnovsky MJ. Basic fibroblast growth factor enhances the coupling of intimal hyperplasia and proliferation of vasa vasorum in injured rat arteries. J Clin Invest. 1992;89(2):465–473.

    Article  PubMed  CAS  Google Scholar 

  52. Goertz DE et al. Subharmonic contrast intravascular ultrasound for vasa vasorum imaging. Ultrasound Med Biol. 2007;33(12):1859–1872.

    Article  PubMed  Google Scholar 

  53. Herrmann J et al. Coronary vasa vasorum neovascularization precedes epicardial endothelial dysfunction in experimental hypercholesterolemia. Cardiovasc Res. 2001;51(4):762–766.

    Article  PubMed  CAS  Google Scholar 

  54. Schmidt-Nielsen K. Scaling: Why Is Animal Size So Important? Cambridge: Cambridge University Press; 1984.

    Google Scholar 

  55. Ellegala DB et al. Imaging tumor angiogenesis with contrast ultrasound and microbubbles targeted to alpha(v)beta3. Circulation. 2003;108(3):336–341.

    Article  PubMed  Google Scholar 

  56. Demos SM et al. In vivo targeting of acoustically reflective liposomes for intravascular and transvascular ultrasonic enhancement. J Am Coll Cardiol. 1999;33(3): 867–875.

    Article  PubMed  CAS  Google Scholar 

  57. Goertz DE, van Wamel A, Frijlink ME, de Jong N, van der Steen AFW. Nonlinear imaging of targeted microbubbles with intravascular ultrasound. In: IEEE International Ultrasonics Symposium; September 18–21, 2005; Rotterdam: 2003–2006.

    Google Scholar 

  58. Goertz DE, Frijlink ME, Krams R, de Jong N, van der Steen AF. Vasa vasorum and molecular imaging of atherosclerotic plaques using nonlinear contrast intravascular ultrasound. Neth Heart J. 2007;15(2):77–80.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Goertz, D.E., Frijlink, M.E., de Jong, N., van der Steen, A.F.W. (2011). Nonlinear Contrast Intravascular Ultrasound. In: Nicolaides, A., Beach, K., Kyriacou, E., Pattichis, C. (eds) Ultrasound and Carotid Bifurcation Atherosclerosis. Springer, London. https://doi.org/10.1007/978-1-84882-688-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-688-5_8

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-687-8

  • Online ISBN: 978-1-84882-688-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics