Skip to main content

Transcranial Doppler and Cerebrovascular Risk Stratification in Patients with Internal Carotid Artery Atherosclerosis

  • Chapter
  • First Online:
Ultrasound and Carotid Bifurcation Atherosclerosis

Abstract

The instrumentation and principles of duplex scanning, which combines brightness mode (B-mode) imaging with gated Doppler, has been described in detail in Chap. 5.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aaslid R, Markwalder TM, Nornes H. Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J Neurosurg. 1982;57:769–774.

    PubMed  CAS  Google Scholar 

  2. Abbott AL. The Natural History of High Grade Asymptomatic Carotid Stenosis and Identification of High Ipsilateral Stroke or TIA Risk Using Microembolus Detection [Ph.D. thesis]. Melbourne: University of Melbourne (Medicine); 2003:439.

    Google Scholar 

  3. Aaslid R. Transcranial Doppler Sonography. Berlin, Germany: Springer/Wien; 1986.

    Google Scholar 

  4. Alexandrov AV. Cerebrovascular Ultrasound in Stroke Prevention and Treatment. Oxford: Futura (Blackwell); 2004.

    Google Scholar 

  5. Schneider PA, Rossman ME, Bernstein EF, Ringelstein EB, Otis SM. Noninvasive assessment of cerebral collateral blood supply through the ophthalmic artery. Stroke. 1991;22:31–36.

    PubMed  CAS  Google Scholar 

  6. Bartels E. Colour-Coded Duplex Ultrasonography of the Cerebral Vessels: Atlas and Manual. Stuttgart: Schattauer; 1999.

    Google Scholar 

  7. Niederkorn K, Myers LG, Nunn CL, Ball MR, McKinney WM. Three-dimensional transcranial Doppler blood flow mapping in patients with cerebrovascular disorders. Stroke. 1988;19:1335–1344.

    PubMed  CAS  Google Scholar 

  8. Gaunt ME et al. Clinical relevance of intraoperative embolization detected by transcranial Doppler ultrasonography during carotid endarterectomy: a prospective study of 100 patients. Br J Surg. 1994;81:1435–1439.

    PubMed  CAS  Google Scholar 

  9. Ackerstaff RG et al. The significance of microemboli detection by means of transcranial Doppler ultrasonography monitoring in carotid endarterectomy. J Vasc Surg. 1995;21:963–969.

    PubMed  CAS  Google Scholar 

  10. Sliwka U et al. Prevalence and time course of microembolic signals in patients with acute stroke. A prospective study. Stroke. 1997;28:358–363.

    PubMed  CAS  Google Scholar 

  11. Koennecke HC et al. Frequency and determinants of microembolic signals on transcranial Doppler in unselected patients with acute carotid territory ischemia. A prospective study. Cerebrovasc Dis. 1998;8:107–112.

    PubMed  CAS  Google Scholar 

  12. Kaposzta Z, Young E, Bath PM, Markus HS. Clinical application of asymptomatic embolic signal detection in acute stroke: a prospective study. Stroke. 1999;30:1814–1818.

    PubMed  CAS  Google Scholar 

  13. Molloy J, Markus HS. Asymptomatic embolization predicts stroke and TIA risk in patients with carotid artery stenosis. Stroke. 1999;30:1440–1443.

    PubMed  CAS  Google Scholar 

  14. Ringelstein EB, Kahlscheuer B, Niggemeyer E, Otis SM. Transcranial Doppler sonography: anatomical landmarks and normal velocity values. Ultrasound Med Biol. 1990;16:745–761.

    PubMed  CAS  Google Scholar 

  15. Nabavi DG et al. Potential and limitations of echocontrast-enhanced ultrasonography in acute stroke patients: a pilot study. Stroke. 1998;29:949–954.

    PubMed  CAS  Google Scholar 

  16. Postert T et al. Contrast-enhanced transcranial color-coded sonography in acute hemispheric brain infarction. Stroke. 1999;30:1819–1826.

    PubMed  CAS  Google Scholar 

  17. Otis S, Rush M, Boyajian R. Contrast-enhanced transcranial imaging. Results of an American phase-two study. Stroke. 1995;26:203–209.

    PubMed  CAS  Google Scholar 

  18. Postert T, Federlein J, Przuntek H, Büttner T. Comparison of transcranial power Doppler and contrast-enhanced color-coded sonography in the identification of intracranial arteries. J Ultrasound Med. 1998;17:91–96.

    PubMed  CAS  Google Scholar 

  19. Kenton AR, Martin PJ, Evans DH. Power Doppler: an advance over colour Doppler for transcranial imaging? Ultrasound Med Biol. 1996;22:313–317.

    PubMed  CAS  Google Scholar 

  20. Lyden PD, Nelson TR. Visualization of the cerebral circulation using three-dimensional transcranial power Doppler ultrasound imaging. J Neuroimaging. 1997;7:35–39.

    PubMed  CAS  Google Scholar 

  21. Newell D, Aaslid R. Transcranial Doppler. New York: Raven; 1992.

    Google Scholar 

  22. Alexandrov AV et al. Practice standards for transcranial Doppler ultrasound: part I – test performance. J Neuroimaging. 2007;17:11–18.

    PubMed  Google Scholar 

  23. Lindegaard KF et al. Assessment of intracranial hemodynamics in carotid artery disease by transcranial Doppler ultrasound. J Neurosurg. 1985;63:890–898.

    PubMed  CAS  Google Scholar 

  24. Wilterdink JL, Feldmann E, Furie KL, Bragoni M, Benavides JG. Transcranial Doppler ultrasound battery reliably identifies severe internal carotid artery stenosis. Stroke. 1997;28:133–136.

    PubMed  CAS  Google Scholar 

  25. Christou I et al. A broad diagnostic battery for bedside transcranial Doppler to detect flow changes with internal carotid artery stenosis or occlusion. J Neuroimaging. 2001;11:236–242.

    PubMed  CAS  Google Scholar 

  26. Wechsler LR, Ropper AH, Kistler JP. Transcranial Doppler in cerebrovascular disease. Stroke. 1986;17:905–912.

    PubMed  CAS  Google Scholar 

  27. Schneider PA et al. Effect of internal carotid artery occlusion on intracranial hemodynamics. Transcranial Doppler evaluation and clinical correlation. Stroke. 1988;19:589–593.

    PubMed  CAS  Google Scholar 

  28. Kelley RE, Namon RA, Juang SH, Lee SC, Chang JY. Transcranial Doppler ultrasonography of the middle cerebral artery in the hemodynamic assessment of internal carotid artery stenosis. Arch Neurol. 1990;47:960–964.

    PubMed  CAS  Google Scholar 

  29. Kelley RE, Namon RA, Mantelle LL, Chang JY. Sensitivity and specificity of transcranial Doppler ultrasonography in the detection of high-grade carotid stenosis. Neurology. 1993;43:1187–1191.

    PubMed  CAS  Google Scholar 

  30. Wilterdink JL, Feldmann E, Bragoni M, Brooks JM, Benavides JG. An absent ophthalmic artery or carotid siphon signal on transcranial Doppler confirms the presence of severe ipsilateral internal carotid artery disease. J Neuroimaging. 1994;4:196–199.

    PubMed  CAS  Google Scholar 

  31. Hao Q et al. Pilot study of new diagnostic criteria for middle cerebral artery stenosis by transcranial Doppler. J Neuroimaging. 2010;20(2):122–129.

    PubMed  Google Scholar 

  32. Lindegaard KF, Bakke SJ, Aaslid R, Nornes H. Doppler diagnosis of intracranial artery occlusive disorders. J Neurol Neurosurg Psychiatry. 1986;49:510–518.

    PubMed  CAS  Google Scholar 

  33. Ley-Pozo J, Ringelstein EB. Noninvasive detection of occlusive disease of the carotid siphon and middle cerebral artery. Ann Neurol. 1990;28:640–647.

    PubMed  CAS  Google Scholar 

  34. Wechsler L. Cerebrovascular disease. In: Babikian VL, Weschler LR, eds. Transcranial Doppler Sonography. 2nd ed. Boston: Butterworth-Heinemann; 1999:91–108.

    Google Scholar 

  35. Rorick MB, Nichols FT, Adams RJ. Transcranial Doppler correlation with angiography in detection of intracranial stenosis. Stroke. 1994;25:1931–1934.

    PubMed  CAS  Google Scholar 

  36. Bishop CC, Powell S, Rutt D, Browse NL. Transcranial Doppler measurement of middle cerebral artery blood flow velocity: a validation study. Stroke. 1986;17:913–915.

    PubMed  CAS  Google Scholar 

  37. Arnolds BJ, von Reutern GM. Transcranial Doppler sonography. Examination technique and normal reference values. Ultrasound Med Biol. 1986;12:115–123.

    PubMed  CAS  Google Scholar 

  38. Hennerici M, Rautenberg W, Schwartz A. Transcranial Doppler ultrasound for the assessment of intracranial arterial flow velocity – part 2. Evaluation of intracranial arterial disease. Surg Neurol. 1987;27:523–532.

    PubMed  CAS  Google Scholar 

  39. Mattle H, Grolimund P, Huber P, Sturzenegger M, Zurbrügg HR. Transcranial Doppler sonographic findings in middle cerebral artery disease. Arch Neurol. 1988;45:289–295.

    PubMed  CAS  Google Scholar 

  40. Thiele BL et al. Standards in noninvasive cerebrovascular testing. Report from the Committee on Standards for Noninvasive Vascular Testing of the Joint Council of the Society for Vascular Surgery and the North American Chapter of the International Society for Cardiovascular Surgery. J Vasc Surg. 1992;15:495–503.

    PubMed  CAS  Google Scholar 

  41. Zanette EM et al. Comparison of cerebral angiography and transcranial Doppler sonography in acute stroke. Stroke. 1989;20:899–903.

    PubMed  CAS  Google Scholar 

  42. Zanette EM et al. Spontaneous middle cerebral artery reperfusion in ischemic stroke. A follow-up study with transcranial Doppler. Stroke. 1995;26:430–443.

    PubMed  CAS  Google Scholar 

  43. Kushner MJ et al. Transcranial Doppler in acute hemispheric brain infarction. Neurology. 1991;41: 109–113.

    PubMed  CAS  Google Scholar 

  44. Lyrer PA, Engelter S, Radü EW, Steck AJ. Cerebral infarcts related to isolated middle cerebral artery stenosis. Stroke. 1997;28:1022–1027.

    PubMed  CAS  Google Scholar 

  45. Röther J, Schwartz A, Wentz KU, Rautenberg W, Hennerici M. Middle cerebral artery stenoses: assessment by magnetic resonance angiography and transcranial Doppler ultrasound. Cerebrovasc Dis. 1994;4:273–279.

    Google Scholar 

  46. Earnest F et al. The accuracy and limitations of intravenous digital subtraction angiography in the evaluation of atherosclerotic cerebrovascular disease: angiographic and surgical correlation. Mayo Clin Proc. 1983;58:735–746.

    PubMed  CAS  Google Scholar 

  47. Austen WG, Howry DH. Ultrasound as a method to detect bubbles or particulate matter in the arterial line during cardiopulmonary bypass. J Surg Res. 1965;5: 283–284.

    PubMed  CAS  Google Scholar 

  48. Spencer MP, Lawrence GH, Thomas GI, Sauvage LR. The use of ultrasonics in the determination of arterial aeroembolism during open-heart surgery. Ann Thorac Surg. 1969;8:489–497.

    PubMed  CAS  Google Scholar 

  49. Padayachee TS et al. The detection of microemboli in the middle cerebral artery during cardiopulmonary bypass: a transcranial Doppler ultrasound investigation using membrane and bubble oxygenators. Ann Thorac Surg. 1987;44:298–302.

    PubMed  CAS  Google Scholar 

  50. Georgiadis D, Grosset DG, Kelman A, Faichney A, Lees KR. Prevalence and characteristics of intracranial microemboli signals in patients with different types of prosthetic cardiac valves. Stroke. 1994;25:587–592.

    PubMed  CAS  Google Scholar 

  51. Markus HS, Droste DW, Brown MM. Detection of asymptomatic cerebral embolic signals with Doppler ultrasound. Lancet. 1994;343:1011–1012.

    PubMed  CAS  Google Scholar 

  52. Droste DW et al. Oxygen inhalation can differentiate gaseous from nongaseous microemboli detected by transcranial Doppler ultrasound. Stroke. 1997;28:2453–2456.

    PubMed  CAS  Google Scholar 

  53. Georgiadis D et al. Influence of oxygen ventilation on Doppler microemboli signals in patients with artificial heart valves. Stroke. 1997;28:2189–2194.

    PubMed  CAS  Google Scholar 

  54. Kaps M et al. Clinically silent microemboli in patients with artificial prosthetic aortic valves are predominantly gaseous and not solid. Stroke. 1997;28:322–325.

    PubMed  CAS  Google Scholar 

  55. Skjelland M et al. Solid cerebral microemboli and cerebrovascular symptoms in patients with prosthetic heart valves. Stroke. 2008;39:1159–1164.

    PubMed  Google Scholar 

  56. Padayachee TS, Gosling RG, Bishop CC, Burnand K, Browse NL. Monitoring middle cerebral artery blood velocity during carotid endarterectomy. Br J Surg. 1986;73:98–100.

    PubMed  CAS  Google Scholar 

  57. Spencer MP, Thomas GI, Nicholls SC, Sauvage LR. Detection of middle cerebral artery emboli during carotid endarterectomy using transcranial Doppler ultrasonography. Stroke. 1990;21:415–423.

    PubMed  CAS  Google Scholar 

  58. Russell D, Madden KP, Clark WM, Sandset PM, Zivin JA. Detection of arterial emboli using Doppler ultrasound in rabbits. Stroke. 1991;22:253–258.

    PubMed  CAS  Google Scholar 

  59. Markus H, Loh A, Brown MM. Detection of circulating cerebral emboli using Doppler ultrasound in a sheep model. J Neurol Sci. 1994;122:117–124.

    PubMed  CAS  Google Scholar 

  60. Consensus Committee NICHS. Basic identification criteria of Doppler microembolic signals. Stroke. 1995;26:1123.

    Google Scholar 

  61. Molloy J, Markus HS. Multigated Doppler ultrasound in the detection of emboli in a flow model and embolic signals in patients. Stroke. 1996;27:1548–1552.

    PubMed  CAS  Google Scholar 

  62. Moehring MA, Spencer MP. Power M-mode Doppler (PMD) for observing cerebral blood flow and tracking emboli. Ultrasound Med Biol. 2002;28:49–57.

    PubMed  Google Scholar 

  63. Saqqur M et al. Improved detection of microbubble signals using power M-mode Doppler. Stroke. 2004;35:e14–e17.

    PubMed  Google Scholar 

  64. Markus HS, Molloy J. Use of a decibel threshold in detecting Doppler embolic signals. Stroke. 1997;28:692–695.

    PubMed  CAS  Google Scholar 

  65. Markus HS et al. Intercenter agreement in reading Doppler embolic signals. A multicenter international study. Stroke. 1997;28:1307–1310.

    PubMed  CAS  Google Scholar 

  66. Van Zuilen EV et al. Automatic embolus detection compared with human experts. A Doppler ultrasound study. Stroke. 1996;27:1840–1843.

    PubMed  Google Scholar 

  67. Cullinane M, Kaposzta Z, Reihill S, Markus HS. Online automated detection of cerebral embolic signals from a variety of embolic sources. Ultrasound Med Biol. 2002;28:1271–1277.

    PubMed  Google Scholar 

  68. Steegmann AT, De La Fuente J. Experimental cerebral embolism. II. Microembolism of the rabbit brain with seran polymer resin. J Neuropathol Exp Neurol. 1959;18:537–558.

    PubMed  CAS  Google Scholar 

  69. Luessenhop AJ, Gibbs M, Velasquez AC. Cerebrovascular response to emboli. Observations in patients with arteriovenous malformations. Arch Neurol. 1962;7:264–274.

    PubMed  CAS  Google Scholar 

  70. Winding O. Cerebral microembolization following carotid injection of dextran microspheres in rabbits. Neuroradiology. 1981;21:123–126.

    PubMed  CAS  Google Scholar 

  71. Gaunt ME, Naylor AR, Bell PR. Preventing strokes associated with carotid endarterectomy: detection of embolisation by transcranial Doppler monitoring. Eur J Vasc Endovasc Surg. 1997;14:1–3.

    PubMed  CAS  Google Scholar 

  72. Muth CM, Shank ES. Gas embolism. N Engl J Med. 2000;342:476–482.

    PubMed  CAS  Google Scholar 

  73. Rapp JH et al. Microemboli composed of cholesterol crystals disrupt the blood-brain barrier and reduce cognition. Stroke. 2008;39:2354–2361.

    PubMed  CAS  Google Scholar 

  74. Smith JL, Evans DH, Bell PR, Naylor AR. A comparison of four methods for distinguishing Doppler signals from gaseous and particulate emboli. Stroke. 1998;29:1133–1138.

    PubMed  CAS  Google Scholar 

  75. Russell D, Brucher R. Online automatic discrimination between solid and gaseous cerebral microemboli with the first multifrequency transcranial Doppler. Stroke. 2002;33:1975–1980.

    PubMed  CAS  Google Scholar 

  76. Murphy BP, Harford FJ, Cramer FS. Cerebral air embolism resulting from invasive medical procedures. Treatment with hyperbaric oxygen. Ann Surg. 1985;201:242–245.

    PubMed  CAS  Google Scholar 

  77. Wijman CA, Kase CS, Jacobs AK, Whitehead RE. Cerebral air embolism as a cause of stroke during cardiac catheterization. Neurology. 1998;51:318–319.

    PubMed  CAS  Google Scholar 

  78. Ackerstaff RG et al. Prediction of early cerebral outcome by transcranial Doppler monitoring in carotid bifurcation angioplasty and stenting. J Vasc Surg. 2005;41:618–624.

    PubMed  Google Scholar 

  79. Kelly GL, Dodi G, Eiseman B. Ultrasound detection of fat emboli. Surg Forum. 1972;23:459–461.

    PubMed  CAS  Google Scholar 

  80. Sylivris S et al. Pattern and significance of cerebral microemboli during coronary artery bypass grafting. Ann Thorac Surg. 1998;66:1674–1678.

    PubMed  CAS  Google Scholar 

  81. Bellapart J, Fraser JF. Transcranial Doppler assessment of cerebral autoregulation. Ultrasound Med Biol. 2009;35: 883–893.

    PubMed  Google Scholar 

  82. Aaslid R, Lindegaard KF, Sorteberg W, Nornes H. Cerebral autoregulation dynamics in humans. Stroke. 1989;20:45–52.

    PubMed  CAS  Google Scholar 

  83. Widder B, Paulat K, Hackspacher J, Mayr E. Transcranial Doppler CO2 test for the detection of hemodynamically critical carotid artery stenoses and occlusions. Eur Arch Psychiatry Neurol Sci. 1986;236:162–168.

    PubMed  CAS  Google Scholar 

  84. Hartl WH, Furst H. Application of transcranial Doppler sonography to evaluate cerebral hemodynamics in carotid artery disease. Comparative analysis of different hemodynamic variables. Stroke. 1995;26:2293–2297.

    PubMed  CAS  Google Scholar 

  85. Muller M, Voges M, Piepgras U, Schimrigk K. Assessment of cerebral vasomotor reactivity by transcranial Doppler ultrasound and breath-holding. A comparison with acetazolamide as vasodilatory stimulus. Stroke. 1995; 26:96–100.

    PubMed  CAS  Google Scholar 

  86. Rohrberg M, Brodhun R. Measurement of vasomotor reserve in the transcranial Doppler-CO(2) test using an ultrasound contrast agent (Levovist). Stroke. 2001;32:1298–1303.

    PubMed  CAS  Google Scholar 

  87. Pindzola RR, Balzer JR, Nemoto EM, Goldstein S, Yonas H. Cerebrovascular reserve in patients with carotid occlusive disease assessed by stable xenon-enhanced ct cerebral blood flow and transcranial Doppler. Stroke. 2001;32:1811–1817.

    PubMed  CAS  Google Scholar 

  88. Rothwell PM et al. Analysis of pooled data from the randomised controlled trials of endarterectomy for symptomatic carotid stenosis. Lancet. 2003;361:107–116.

    PubMed  CAS  Google Scholar 

  89. Abbott A, Bladin C, Levi C, Chambers BR. What should we do with asymptomatic carotid stenosis? Int J Stroke. 2007;2:27–39.

    PubMed  Google Scholar 

  90. Caplan L. Clinical diagnosis of brain embolism. Cerebrovasc Dis. 1995;5:79–88.

    Google Scholar 

  91. Nicolaides AN et al. Angiographic and duplex grading of internal carotid stenosis: can we overcome the confusion? J Endovasc Surg. 1996;3:158–165.

    PubMed  CAS  Google Scholar 

  92. Inzitari D et al. The causes and risk of stroke in patients with asymptomatic internal-carotid-artery stenosis. North American Symptomatic Carotid Endarterectomy Trial Collaborators. N Engl J Med. 2000;342:1693–1700.

    PubMed  CAS  Google Scholar 

  93. MRC European Carotid Surgery Trial. Interim results for symptomatic patients with severe (70–99%) or with mild (0–29%) carotid stenosis. European Carotid Surgery Trialists’ Collaborative Group. Lancet. 1991;337: 1235–1243.

    Google Scholar 

  94. Johnston SC, Gress DR, Browner WS, Browner WS, Sidney S. Short-term prognosis after emergency department diagnosis of TIA. JAMA. 2000;284:2901–2906.

    PubMed  CAS  Google Scholar 

  95. Rothwell PM et al. Endarterectomy for symptomatic carotid stenosis in relation to clinical subgroups and timing of surgery. Lancet. 2004;363:915–924.

    PubMed  CAS  Google Scholar 

  96. Coull AJ, Lovett JK, Rothwell PM. Population based study of early risk of stroke after transient ischaemic attack or minor stroke: implications for public education and organisation of services. BMJ. 2004;328:326.

    PubMed  CAS  Google Scholar 

  97. Valton L, Larrue V, le Traon AP, Massabuau P, Géraud G. Microembolic signals and risk of early recurrence in patients with stroke or transient ischemic attack. Stroke. 1998;29:2125–2128.

    PubMed  CAS  Google Scholar 

  98. Gucuyener D, Uzuner N, Ozkan S, Ozdemir O, Ozdemir G. Micro embolic signals in patients with cerebral ischaemic events. Neurol India. 2001;49:225–230.

    PubMed  CAS  Google Scholar 

  99. Tegos TJ et al. Correlates of embolic events detected by means of transcranial Doppler in patients with carotid atheroma. J Vasc Surg. 2001;33:131–138.

    PubMed  CAS  Google Scholar 

  100. Siebler M, Kleinschmidt A, Sitzer M, Steinmetz H, Freund HJ. Cerebral microembolism in symptomatic and asymptomatic high-grade internal carotid artery stenosis. Neurology. 1994;44:615–618.

    PubMed  CAS  Google Scholar 

  101. Babikian VL, Hyde C, Pochay V, Winter MR. Clinical correlates of high-intensity transient signals detected on transcranial Doppler sonography in patients with cerebrovascular disease. Stroke. 1994;25:1570–1573.

    PubMed  CAS  Google Scholar 

  102. Ries S, Schminke U, Daffertshofer M, Schindlmayr C, Hennerici M. High intensity transient signals and carotid artery disease. Cerebrovasc Dis. 1995;5:124–127.

    Google Scholar 

  103. Sitzer M, Siebler M, Steinmetz H. Silent emboli and their relation to clinical symptoms in extracranial carotid artery disease. Cerebrovasc Dis. 1995;5:121–123.

    Google Scholar 

  104. Markus HS, Thomson ND, Brown MM. Asymptomatic cerebral embolic signals in symptomatic and asymptomatic carotid artery disease. Brain. 1995;118(pt 4):1005–1011.

    PubMed  Google Scholar 

  105. Droste DW, Dittrich R, Kemény V, Schulte-Altedorneburg G, Ringelstein EB. Prevalence and frequency of microembolic signals in 105 patients with extracranial carotid artery occlusive disease. J Neurol Neurosurg Psychiatry. 1999;67:525–528.

    PubMed  CAS  Google Scholar 

  106. Telman G et al. Determinants of micro-embolic signals in patients with atherosclerotic plaques of the internal carotid artery. Eur J Vasc Endovasc Surg. 2009;38:143–147.

    PubMed  CAS  Google Scholar 

  107. Siebler M, Sitzer M, Steinmetz H. Detection of intracranial emboli in patients with symptomatic extracranial carotid artery disease. Stroke. 1992;23:1652–1654.

    PubMed  CAS  Google Scholar 

  108. Georgiadis D et al. Detection of intracranial emboli in patients with carotid disease. Eur J Vasc Surg. 1994;8:309–314.

    PubMed  CAS  Google Scholar 

  109. Eicke BM, von Lorentz J, Paulus W. Embolus detection in different degrees of carotid disease. Neurol Res. 1995;17:181–184.

    PubMed  CAS  Google Scholar 

  110. Blaser T et al. Time period required for transcranial Doppler monitoring of embolic signals to predict recurrent risk of embolic transient ischemic attack and stroke from arterial stenosis. Stroke. 2004;35:2155–2159.

    PubMed  Google Scholar 

  111. Abbott AL et al. Embolic signals and prediction of ipsilateral stroke or transient ischemic attack in asymptomatic carotid stenosis: a multicenter prospective cohort study. Stroke. 2005;36:1128–1133.

    PubMed  Google Scholar 

  112. Orlandi G, Parenti G, Bertolucci A, Murri L. Silent cerebral microembolism in asymptomatic and symptomatic carotid artery stenoses of low and high degree. Eur Neurol. 1997;38:39–43.

    PubMed  CAS  Google Scholar 

  113. Forteza AM, Babikian VL, Hyde C, Winter M, Pochay V. Effect of time and cerebrovascular symptoms of the prevalence of microembolic signals in patients with cervical carotid stenosis. Stroke. 1996;27:687–690.

    PubMed  CAS  Google Scholar 

  114. Wijman CA et al. Cerebral microembolism in patients with retinal ischemia. Stroke. 1998;29:1139–1143.

    PubMed  CAS  Google Scholar 

  115. Censori B, Partziguian T, Casto L, Camerlingo M, Mamoli A. Doppler microembolic signals predict ischemic recurrences in symptomatic carotid stenosis. Acta Neurol Scand. 2000;101:327–331.

    PubMed  CAS  Google Scholar 

  116. Markus HS, MacKinnon A. Asymptomatic embolization detected by Doppler ultrasound predicts stroke risk in symptomatic carotid artery stenosis. Stroke. 2005;36:971–975.

    PubMed  Google Scholar 

  117. Zuromskis T et al. Prevalence of micro-emboli in symptomatic high grade carotid artery disease: a transcranial Doppler study. Eur J Vasc Endovasc Surg. 2008;35:534–540.

    PubMed  CAS  Google Scholar 

  118. Orlandi G et al. Carotid plaque features on angiography and asymptomatic cerebral microembolism. Acta Neurol Scand. 1997;96:183–186.

    PubMed  CAS  Google Scholar 

  119. Goertler M et al. Reduced frequency of embolic signals in severe carotid stenosis with poststenotic flow velocity reduction. Cerebrovasc Dis. 2005;19:229–233.

    PubMed  Google Scholar 

  120. Spence JD et al. Effects of intensive medical therapy on microemboli and cardiovascular risk in asymptomatic carotid stenosis. Arch Neurol. 2010;67(2):180–186.

    PubMed  Google Scholar 

  121. Rothwell PM, Warlow CP. Low risk of ischemic stroke in patients with reduced internal carotid artery lumen diameter distal to severe symptomatic carotid stenosis: cerebral protection due to low poststenotic flow? On behalf of the European carotid surgery trialists’ collaborative group. Stroke. 2000;31:622–630.

    PubMed  CAS  Google Scholar 

  122. Georgiadis D et al. Intracranial microembolic signals in 500 patients with potential cardiac or carotid embolic source and in normal controls. Stroke. 1997;28:1203–1207.

    PubMed  CAS  Google Scholar 

  123. Siebler M, Sitzer M, Rose G, Bendfeldt D, Steinmetz H. Silent cerebral embolism caused by neurologically symptomatic high-grade carotid stenosis. Event rates before and after carotid endarterectomy. Brain. 1993;116(pt 5): 1005–1015.

    PubMed  Google Scholar 

  124. van Zuilen EV et al. Detection of cerebral microemboli by means of transcranial Doppler monitoring before and after carotid endarterectomy. Stroke. 1995;26:210–213.

    PubMed  Google Scholar 

  125. Kimura K et al. High intensity transient signals in patients with carotid stenosis may persist after carotid endarterectomy. Cerebrovasc Dis. 2004;17:123–127.

    PubMed  Google Scholar 

  126. Khaffaf N, Karnik R, Winkler WB, Valentin A, Slany J. Embolic stroke by compression maneuver during transcranial Doppler sonography. Stroke. 1994;25:1056–1057.

    PubMed  CAS  Google Scholar 

  127. Valton L, Larrue V, Arrué P, Géraud G, Bès A. Asymptomatic cerebral embolic signals in patients with carotid stenosis. Correlation with appearance of plaque ulceration on angiography. Stroke. 1995;26:813–815.

    PubMed  CAS  Google Scholar 

  128. Rothwell PM, Gibson R, Warlow CP. Interrelation between plaque surface morphology and degree of stenosis on carotid angiograms and the risk of ischemic stroke in patients with symptomatic carotid stenosis. On behalf of the European Carotid Surgery Trialists’ Collaborative Group. Stroke. 2000;31:615–621.

    PubMed  CAS  Google Scholar 

  129. Sitzer M et al. Plaque ulceration and lumen thrombus are the main sources of cerebral microemboli in high-grade internal carotid artery stenosis. Stroke. 1995;26: 1231–1233.

    PubMed  CAS  Google Scholar 

  130. Siebler M et al. Cerebral microembolism and the risk of ischemia in asymptomatic high-grade internal carotid artery stenosis. Stroke. 1995;26:2184–2186.

    PubMed  CAS  Google Scholar 

  131. Orlandi G, Fanucchi S, Sartucci F, Murri L. Can microembolic signals identify unstable plaques affecting symptomatology in carotid stenosis? Stroke. 2002;33:1744–1746, author reply 1744–1746.

    PubMed  Google Scholar 

  132. Spence JD, Tamayo A, Lownie SP, Ng WP, Ferguson GG. Absence of microemboli on transcranial Doppler identifies low-risk patients with asymptomatic carotid stenosis. Stroke. 2005;36:2373–2378.

    PubMed  Google Scholar 

  133. Markus HS et al. Asymptomatic embolisation for prediction of stroke in the asymptomatic carotid emboli study (ACES): a prospective observational study. Lancet Neurol. 2010;9:663–671.

    PubMed  Google Scholar 

  134. Abbott AL. Medical (nonsurgical) intervention alone is now best for prevention of stroke associated with asymptomatic severe carotid stenosis: results of a systematic review and analysis. Stroke. 2009;40:e573-e583.

    PubMed  Google Scholar 

  135. Marquardt L, Geraghty OC, Mehta Z, Rothwell PM. Low risk of ipsilateral stroke in patients with asymptomatic carotid stenosis on best medical treatment. A prospective, population-based study. Stroke. 2010;41(1):e11-e17.

    PubMed  Google Scholar 

  136. Silvestrini M et al. Impaired cerebral vasoreactivity and risk of stroke in patients with asymptomatic carotid artery stenosis. JAMA. 2000;283:2122–2127.

    PubMed  CAS  Google Scholar 

  137. Markus H, Cullinane M. Severely impaired cerebrovascular reactivity predicts stroke and TIA risk in patients with carotid artery stenosis and occlusion. Brain. 2001;124:457–467.

    PubMed  CAS  Google Scholar 

  138. Kaps M, Dorndorf W, Damian MS, Agnoli L. Intracranial haemodynamics in patients with spontaneous carotid dissection. Transcranial Doppler ultrasound follow-up studies. Eur Arch Psychiatry Neurol Sci. 1990;239:246–256.

    PubMed  CAS  Google Scholar 

  139. Achtereekte HA, van der Kruijk RA, Hekster RE, Keunen RW. Diagnosis of traumatic carotid artery dissection by transcranial Doppler ultrasound: case report and review of the literature. Surg Neurol. 1994;42:240–244.

    PubMed  CAS  Google Scholar 

  140. Srinivasan J, Newell DW, Sturzenegger M, Mayberg MR, Winn HR. Transcranial Doppler in the evaluation of internal carotid artery dissection. Stroke. 1996;27:1226–1230.

    PubMed  CAS  Google Scholar 

  141. Molina CA et al. Cerebral microembolism in acute spontaneous internal carotid artery dissection. Neurology. 2000;55:1738–1740.

    PubMed  CAS  Google Scholar 

  142. Roy J, Akhtar N, Watson T, Demchuk AM, Saqqur M. Transcranial Doppler microembolic signal monitoring is useful in diagnosis and treatment of carotid artery dissection: two case reports. J Neuroimaging. 2007;17: 350–352.

    PubMed  Google Scholar 

  143. Lucas C, Moulin T, Deplanque D, Tatu L, Chavot D. Stroke patterns of internal carotid artery dissection in 40 patients [see comments]. Stroke. 1998;29:2646–2648.

    PubMed  CAS  Google Scholar 

  144. Lyrer P, Engelter S. Antithrombotic drugs for carotid artery dissection. Cochrane Database Syst Rev. 2003;CD000255.

    Google Scholar 

  145. Brunser AM et al. Accuracy of transcranial Doppler compared with ct angiography in diagnosing arterial obstructions in acute ischemic strokes. Stroke. 2009;40:2037–2041.

    PubMed  Google Scholar 

  146. Demchuk AM et al. Accuracy and criteria for localizing arterial occlusion with transcranial Doppler. J Neuroimaging. 2000;10:1–12.

    PubMed  CAS  Google Scholar 

  147. Alexandrov AV, Demchuk AM, Burgin WS. Insonation method and diagnostic flow signatures for transcranial power motion (M-mode) Doppler. J Neuroimaging. 2002;12:236–244.

    PubMed  Google Scholar 

  148. Mikulik R, Alexandrov AV. Acute stroke: therapeutic transcranial Doppler sonography. Front Neurol Neurosci. 2006;21:150–161.

    PubMed  CAS  Google Scholar 

  149. Demchuk AM et al. Thrombolysis in brain ischemia (TIBI) transcranial Doppler flow grades predict clinical severity, early recovery, and mortality in patients treated with intravenous tissue plasminogen activator. Stroke. 2001;32:89–93.

    PubMed  CAS  Google Scholar 

  150. Molina CA et al. Improving the predictive accuracy of recanalization on stroke outcome in patients treated with tissue plasminogen activator. Stroke. 2004;35:151–156.

    PubMed  CAS  Google Scholar 

  151. Barreto AD et al. Safety and dose-escalation study design of transcranial ultrasound in clinical sonolysis for acute ischemic stroke: the TUCSON trial. Int J Stroke. 2009;4:42–48.

    PubMed  Google Scholar 

  152. Alexandrov AV et al. Ultrasound-enhanced systemic thrombolysis for acute ischemic stroke. N Engl J Med. 2004;351:2170–2178.

    PubMed  CAS  Google Scholar 

  153. Molina CA et al. Microbubble administration accelerates clot lysis during continuous 2-MHz ultrasound monitoring in stroke patients treated with intravenous tissue plasminogen activator. Stroke. 2006;37:425–429.

    PubMed  CAS  Google Scholar 

  154. Ferguson GG et al. The North American Symptomatic Carotid Endarterectomy Trial: surgical results in 1415 patients. Stroke. 1999;30:1751–1758.

    PubMed  CAS  Google Scholar 

  155. Riles TS et al. The cause of perioperative stroke after carotid endarterectomy. J Vasc Surg. 1994;19:206–214, discussion 215–206.

    PubMed  CAS  Google Scholar 

  156. Lennard N et al. Prevention of postoperative thrombotic stroke after carotid endarterectomy: the role of transcranial Doppler ultrasound. J Vasc Surg. 1997;26:579–584.

    PubMed  CAS  Google Scholar 

  157. Spencer MP. Transcranial Doppler monitoring and causes of stroke from carotid endarterectomy. Stroke. 1997;28: 685–691.

    PubMed  CAS  Google Scholar 

  158. de Borst GJ et al. Stroke from carotid endarterectomy: when and how to reduce perioperative stroke rate? Eur J Vasc Endovasc Surg. 2001;21:484–489.

    PubMed  Google Scholar 

  159. Gaunt ME. Diagnosis of early postoperative carotid artery thrombosis determined by transcranial Doppler scanning. J Vasc Surg. 1994;20:1004–1006.

    PubMed  CAS  Google Scholar 

  160. Gossetti B, Martinelli O, Guerricchio R, Irace L, Benedetti-Valentini F. Transcranial Doppler in 178 patients before, during, and after carotid endarterectomy. J Neuroimaging. 1997;7:213–216.

    PubMed  CAS  Google Scholar 

  161. Feuerstein G, Wang X, Barone FC. Cytokines in brain ischemia – the role of TNF alpha. Cell Mol Neurobiol. 1998;18:695–701.

    PubMed  CAS  Google Scholar 

  162. Dalman JE, Beenakkers IC, Moll FL, Leusink JA, Ackerstaff RG. Transcranial Doppler monitoring during carotid endarterectomy helps to identify patients at risk of postoperative hyperperfusion. Eur J Vasc Endovasc Surg. 1999;18:222–227.

    PubMed  CAS  Google Scholar 

  163. Naylor AR et al. Reducing the risk of carotid surgery: a 7-year audit of the role of monitoring and quality control assessment. J Vasc Surg. 2000;32:750–759.

    PubMed  CAS  Google Scholar 

  164. Ackerstaff RG et al. Association of intraoperative transcranial Doppler monitoring variables with stroke from carotid endarterectomy. Stroke. 2000;31:1817–1823.

    PubMed  CAS  Google Scholar 

  165. Golledge J et al. Determinants of carotid microembolization. J Vasc Surg. 2001;34:1060–1064.

    PubMed  CAS  Google Scholar 

  166. Wolf O et al. Microembolic signals detected by transcranial Doppler sonography during carotid endarterectomy and correlation with serial diffusion-weighted imaging. Stroke. 2004;35:e373-e375.

    PubMed  Google Scholar 

  167. Skjelland M et al. Cerebral microemboli and brain injury during carotid artery endarterectomy and stenting. Stroke. 2009;40:230–234.

    PubMed  Google Scholar 

  168. Ogasawara K et al. Intraoperative microemboli and low middle cerebral artery blood flow velocity are additive in predicting development of cerebral ischemic events after carotid endarterectomy. Stroke. 2008;39:3088–3091.

    PubMed  Google Scholar 

  169. Jansen C et al. Impact of microembolism and hemodynamic changes in the brain during carotid endarterectomy. Stroke. 1994;25:992–997.

    PubMed  CAS  Google Scholar 

  170. Laman DM, Wieneke GH, van Duijn H, van Huffelen AC. High embolic rate early after carotid endarterectomy is associated with early cerebrovascular complications, especially in women. J Vasc Surg. 2002;36:278–284.

    PubMed  Google Scholar 

  171. Müller M, Behnke S, Walter P, Omlor G, Schimrigk K. Microembolic signals and intraoperative stroke in carotid endarterectomy. Acta Neurol Scand. 1998;97:110–117.

    PubMed  Google Scholar 

  172. Cantelmo NL et al. Cerebral microembolism and ischemic changes associated with carotid endarterectomy. J Vasc Surg. 1998;27:1024–1030, discussion 1030–1021.

    PubMed  CAS  Google Scholar 

  173. Horn J et al. Identification of patients at risk for ischaemic cerebral complications after carotid endarterectomy with TCD monitoring. Eur J Vasc Endovasc Surg. 2005;30: 270–274.

    PubMed  CAS  Google Scholar 

  174. Abbott AL, Levi CR, Stork JL, Donnan GA, Chambers BR. Timing of clinically significant microembolism after carotid endarterectomy. Cerebrovasc Dis. 2007;23: 362–367.

    PubMed  CAS  Google Scholar 

  175. Levi CR et al. Dextran reduces embolic signals after carotid endarterectomy. Ann Neurol. 2001;50:544–547.

    PubMed  CAS  Google Scholar 

  176. van der Schaaf IC, Horn J, Moll FL, Ackerstaff RG, Antonius Carotid Endarterectomy Angioplasty and Stenting Study Group. Transcranial Doppler monitoring after carotid endarterectomy. Ann Vasc Surg. 2005;19: 19–24.

    PubMed  Google Scholar 

  177. Stork JL, Levi CR, Chambers BR, Abbott AL, Donnan GA. Possible determinants of early microembolism after carotid endarterectomy. Stroke. 2002;33:2082–2085.

    PubMed  Google Scholar 

  178. Munts AG, Mess WH, Bruggemans EF, Walda L, Ackerstaff RG. Feasibility and reliability of on-line automated microemboli detection after carotid endarterectomy. A transcranial Doppler study. Eur J Vasc Endovasc Surg. 2003;25:262–266.

    PubMed  CAS  Google Scholar 

  179. Orlandi G et al. Impaired clearance of microemboli and cerebrovascular symptoms during carotid stenting procedures. Arch Neurol. 2005;62:1208–1211.

    PubMed  Google Scholar 

  180. Caplan LR, Hennerici M. Impaired clearance of emboli (washout) is an important link between hypoperfusion, embolism, and ischemic stroke. Arch Neurol. 1998;55: 1475–1482.

    PubMed  CAS  Google Scholar 

  181. Bernstein M, Fleming JF, Deck JH. Cerebral hyperperfusion after carotid endarterectomy: a cause of cerebral hemorrhage. Neurosurgery. 1984;15:50–56.

    PubMed  CAS  Google Scholar 

  182. Mansoor GA, White WB, Grunnet M, Ruby ST. Intracerebral hemorrhage after carotid endarterectomy associated with ipsilateral fibrinoid necrosis: a consequence of the hyperperfusion syndrome? J Vasc Surg. 1996;23:147–151.

    PubMed  CAS  Google Scholar 

  183. van Mook WN et al. Cerebral hyperperfusion syndrome. Lancet Neurol. 2005;4:877–888.

    PubMed  Google Scholar 

  184. Wagner WH, Cossman DV, Farber A, Levin PM, Cohen JL. Hyperperfusion syndrome after carotid endarterectomy. Ann Vasc Surg. 2005;19:479–486.

    PubMed  Google Scholar 

  185. Nyamekye IK, Begum S, Slaney PL. Post-carotid endarterectomy cerebral hyperperfusion syndrome. J R Soc Med. 2005;98:472–474.

    PubMed  CAS  Google Scholar 

  186. Keunen R et al. An observational study of pre-operative transcranial Doppler examinations to predict cerebral hyperperfusion following carotid endarterectomies. Neurol Res. 2001;23:593–598.

    PubMed  CAS  Google Scholar 

  187. Naylor AR et al. Factors influencing the hyperaemic response after carotid endarterectomy. Br J Surg. 1993; 80:1523–1527.

    PubMed  CAS  Google Scholar 

  188. Powers AD, Smith RR. Hyperperfusion syndrome after carotid endarterectomy: a transcranial Doppler evaluation. Neurosurgery. 1990;26:56–59, discussion 59–60.

    PubMed  CAS  Google Scholar 

  189. Jorgensen LG, Schroeder TV. Defective cerebrovascular autoregulation after carotid endarterectomy. Eur J Vasc Surg. 1993;7:370–379.

    PubMed  CAS  Google Scholar 

  190. Jansen C et al. Prediction of intracerebral haemorrhage after carotid endarterectomy by clinical criteria and intraoperative transcranial Doppler monitoring. Eur J Vasc Surg. 1994;8:303–308.

    PubMed  CAS  Google Scholar 

  191. Fujimoto S et al. Diagnostic impact of transcranial color-coded real-time sonography with echo contrast agents for hyperperfusion syndrome after carotid endarterectomy. Stroke. 2004;35:1852–1856.

    PubMed  Google Scholar 

  192. Ogasawara K et al. Cerebral hyperperfusion following carotid endarterectomy: diagnostic utility of intraoperative transcranial Doppler ultrasonography compared with single-photon emission computed tomography study. AJNR Am J Neuroradiol. 2005;26:252–257.

    PubMed  Google Scholar 

  193. Markus HS, Harrison MJ, Adiseshiah M. Carotid endarterectomy improves haemodynamics on the contralateral side: implications for operating contralateral to an occluded carotid artery. Br J Surg. 1993;80:170–172.

    PubMed  CAS  Google Scholar 

  194. Hartl WH, Janssen I, Furst H. Effect of carotid endarterectomy on patterns of cerebrovascular reactivity in patients with unilateral carotid artery stenosis. Stroke. 1994; 25:1952–1957.

    PubMed  CAS  Google Scholar 

  195. Vriens EM et al. Flow redistribution in the major cerebral arteries after carotid endarterectomy: a study with transcranial Doppler scan. J Vasc Surg. 2001;33:139–147.

    PubMed  CAS  Google Scholar 

  196. Markus HS, Clifton A, Buckenham T, Brown MM. Carotid angioplasty. Detection of embolic signals during and after the procedure. Stroke. 1994;25:2403–2406.

    PubMed  CAS  Google Scholar 

  197. Jordan WD Jr et al. Microemboli detected by transcranial Doppler monitoring in patients during carotid angioplasty versus carotid endarterectomy. Cardiovasc Surg. 1999; 7:33–38.

    PubMed  Google Scholar 

  198. Marder VJ et al. Analysis of thrombi retrieved from cerebral arteries of patients with acute ischemic stroke. Stroke. 2006;37:2086–2093.

    PubMed  Google Scholar 

  199. Markus HS et al. Dual antiplatelet therapy with clopidogrel and aspirin in symptomatic carotid stenosis evaluated using Doppler embolic signal detection: the Clopidogrel and Aspirin for Reduction of Emboli in Symptomatic Carotid Stenosis (CARESS) trial. Circulation. 2005;111: 2233–2240.

    PubMed  CAS  Google Scholar 

  200. Goertler M et al. Rapid decline of cerebral microemboli of arterial origin after intravenous acetylsalicylic acid. Stroke. 1999;30:66–69.

    PubMed  CAS  Google Scholar 

  201. van Dellen D et al. Transcranial Doppler ultrasonography-directed intravenous glycoprotein IIb/IIIa receptor antagonist therapy to control transient cerebral microemboli before and after carotid endarterectomy. Br J Surg. 2008;95:709–713.

    PubMed  Google Scholar 

  202. Junghans U, Siebler M. Cerebral microembolism is blocked by tirofiban, a selective nonpeptide platelet glycoprotein IIb/IIIa receptor antagonist. Circulation. 2003; 107:2717–2721.

    PubMed  CAS  Google Scholar 

  203. Goertler M, Blaser T, Krueger S, Lutze G, Wallesch CW. Acetylsalicylic acid and microembolic events detected by transcranial Doppler in symptomatic arterial stenoses. Cerebrovasc Dis. 2001;11:324–329.

    PubMed  CAS  Google Scholar 

  204. Payne DA et al. Beneficial effects of clopidogrel combined with aspirin in reducing cerebral emboli in patients undergoing carotid endarterectomy. Circulation. 2004; 109:1476–1481.

    PubMed  CAS  Google Scholar 

  205. Kaposzta Z et al. L-arginine and S-nitrosoglutathione reduce embolization in humans. Circulation. 2001;103:2371–2375.

    PubMed  CAS  Google Scholar 

  206. Molloy J, Martin JF, Baskerville PA, Fraser SC, Markus HS. S-nitrosoglutathione reduces the rate of embolization in humans. Circulation. 1998;98:1372–1375.

    PubMed  CAS  Google Scholar 

  207. Kaposzta Z, Clifton A, Molloy J, Martin JF, Markus HS. S-nitrosoglutathione reduces asymptomatic embolization after carotid angioplasty. Circulation. 2002;106:3057–3062.

    PubMed  CAS  Google Scholar 

  208. Meseguer E et al. Prevalence of embolic signals in acute coronary syndromes. Stroke. 2010;41:261–266.

    PubMed  Google Scholar 

  209. Rothwell PM et al. Change in stroke incidence, mortality, case-fatality, severity, and risk factors in Oxfordshire, UK from 1981 to 2004 (Oxford Vascular Study). Lancet. 2004;363:1925–1933.

    PubMed  CAS  Google Scholar 

  210. Unal B, Critchley JA, Fidan D, Capewell S. Life-years gained from modern cardiological treatments and population risk factor changes in England and Wales, 1981–2000. Am J Public Health. 2005;95:103–108.

    PubMed  Google Scholar 

  211. King A, Markus HS. Doppler embolic signals in cerebrovascular disease and prediction of stroke risk: a systematic review and meta-analysis. Stroke. 2009;40:3711–3717.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Abbott, A.L. (2011). Transcranial Doppler and Cerebrovascular Risk Stratification in Patients with Internal Carotid Artery Atherosclerosis. In: Nicolaides, A., Beach, K., Kyriacou, E., Pattichis, C. (eds) Ultrasound and Carotid Bifurcation Atherosclerosis. Springer, London. https://doi.org/10.1007/978-1-84882-688-5_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-688-5_34

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-687-8

  • Online ISBN: 978-1-84882-688-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics