Skip to main content

Toward Clinical Applications of Carotid Ultrasound: Intima-Media Thickness, Plaque Area, and Three-Dimensional Phenotypes

  • Chapter
  • First Online:
Ultrasound and Carotid Bifurcation Atherosclerosis

Abstract

Atherosclerosis is the underlying process that causes the most death and disability worldwide.1 It is the cause of myocardial infarctions, peripheral vascular disease, and a large proportion of strokes, and contributes to much of heart failure. There are several ways to quantify the burden of atherosclerosis, and quantifying change in atherosclerotic burden over time may be useful. These include risk stratification, evaluation of the contribution of risk factors (new and old) to atherosclerosis, evaluation of a patient’s response to therapy, genetic research, and evaluation of potential new therapies for atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bonow RO, Smaha LA, Smith SC Jr, Mensah GA, Lenfant C. World Heart Day 2002: the international burden of cardiovascular disease: responding to the emerging global epidemic. Circulation. 2002;106(13):1602–1605.

    Article  PubMed  Google Scholar 

  2. D’Agostino RB Sr et al. General cardiovascular risk profile for use in primary care: the Framingham Heart study. Circulation. 2008;117(6):743–753.

    Article  PubMed  Google Scholar 

  3. Ridker PM, Paynter NP, Rifai N, Gaziano JM, Cook NR. C-reactive protein and parental history improve global cardiovascular risk prediction: the Reynolds Risk Score for men. Circulation. 2008;118(22):2243–2251, 4p.

    Article  PubMed  CAS  Google Scholar 

  4. Assmann G, Cullen P, Schulte H. Simple scoring scheme for calculating the risk of acute coronary events based on the 10-year follow-up of the prospective cardiovascular Munster (PROCAM) study. Circulation. 2002;105(3): 310–315.

    Article  PubMed  Google Scholar 

  5. De BG et al. European guidelines on cardiovascular disease prevention in clinical practice: third joint task force of European and other societies on cardiovascular disease prevention in clinical practice (constituted by representatives of eight societies and by invited experts). Eur J Cardiovasc Prev Rehabil. 2003;10(4):S1-S10.

    Article  Google Scholar 

  6. D’Agostino RB Sr et al. Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III) General cardiovascular risk profile for use in primary care: the Framingham Heart study. JAMA. 2001;285(19):2486–2497.

    Article  Google Scholar 

  7. Hippisley-Cox J et al. Predicting cardiovascular risk in England and Wales: prospective derivation and validation of QRISK2. BMJ. 2008;336(7659):1475–1482.

    Article  PubMed  Google Scholar 

  8. Alexopoulos N, Raggi P. Calcification in atherosclerosis. Nat Rev Cardiol. 2009;6(11):681–688.

    Article  PubMed  CAS  Google Scholar 

  9. Romanens M et al. Imaging as a cardiovascular risk modifier in primary care patients using predictor models of the European and international atherosclerosis societies. Kardiovaskuläre Medizin. 2007;10:139–150.

    Google Scholar 

  10. Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis GJ. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med. 1987;316(22): 1371–1375.

    Article  PubMed  CAS  Google Scholar 

  11. Spence JD. Advances in atherosclerosis: new understanding based on endothelial function. In: Fisher M, Bogousslavsky J, eds. Current Review of Cerebrovascular Disease. 3rd ed. Philadelphia: Current Medicine; 1999:1–13.

    Google Scholar 

  12. Spence JD. The role of lipoprotein(a) in the formation of arterial plaques, stenoses and occlusions. Can J Cardiol. 2010;26:37A-40A.

    Article  PubMed  CAS  Google Scholar 

  13. Touboul PJ et al. Mannheim intima-media thickness consensus. Cerebrovasc Dis. 2004;18(4):346–349.

    Article  PubMed  Google Scholar 

  14. Adams MR et al. Carotid intimal-media thickness is only weakly correlated with the extent and severity of coronary artery disease. Circulation. 1995;92:2127–2134.

    PubMed  CAS  Google Scholar 

  15. Kolodgie FD, Burke AP, Nakazawa G, Virmani R. Is pathologic intimal thickening the key to understanding early plaque progression in human atherosclerotic disease? Arterioscler Thromb Vasc Biol. 2007;27(5):986–989.

    Article  PubMed  CAS  Google Scholar 

  16. Spence JD, Hegele RA. Noninvasive phenotypes of atherosclerosis. Arterioscler Thromb Vasc Biol. 2004;24(11):e188-e189.

    Article  PubMed  CAS  Google Scholar 

  17. Al Shali K et al. Differences between carotid wall morphological phenotypes measured by ultrasound in one, two and three dimensions. Atherosclerosis. 2005;178(2):319–325.

    Article  CAS  Google Scholar 

  18. Kolodgie FD et al. Intraplaque hemorrhage and progression of coronary atheroma. N Engl J Med. 2003;349(24): 2316–2325.

    Article  PubMed  CAS  Google Scholar 

  19. Spence JD, Norris J. Infection, inflammation, and atherosclerosis. Stroke. 2003;34(2):333–334.

    Article  PubMed  Google Scholar 

  20. Kolodgie FD et al. Lipoprotein-associated phospholipase A2 protein expression in the natural progression of human coronary atherosclerosis. Arterioscler Thromb Vasc Biol. 2006;26(11):2523–2529.

    Article  PubMed  CAS  Google Scholar 

  21. Virmani R et al. Atherosclerotic plaque progression and vulnerability to rupture: angiogenesis as a source of intraplaque hemorrhage. Arterioscler Thromb Vasc Biol. 2005;25(10):2054–2061.

    Article  PubMed  CAS  Google Scholar 

  22. Feric NT, Boffa MB, Johnston SM, Koschinsky ML. Apolipoprotein(a) inhibits the conversion of Glu-plasminogen to Lys-plasminogen: a novel mechanism for lipoprotein(a)-mediated inhibition of plasminogen activation. J Thromb Haemost. 2008;6(12):2113–2120.

    Article  PubMed  CAS  Google Scholar 

  23. Klein JH et al. Lipoprotein(a) is associated differentially with carotid stenosis, occlusion, and total plaque area. Arterioscler Thromb Vasc Biol. 2008;28:1851–1856.

    Article  PubMed  CAS  Google Scholar 

  24. O’Leary DH et al. Thickening of the carotid wall. A marker for atherosclerosis in the elderly? Cardiovascular Health Study Collaborative Research Group. Stroke. 1996;27(2): 224–231.

    Article  PubMed  Google Scholar 

  25. Spence JD, Hegele RA. Noninvasive phenotypes of atherosclerosis: similar windows but different views. Stroke. 2004;35:649–653.

    Article  PubMed  Google Scholar 

  26. Finn AV, Kolodgie FD, Virmani R. Correlation between carotid intimal/medial thickness and atherosclerosis: a point of view from pathology. Arterioscler Thromb Vasc Biol. 2010;30(2):177–181.

    Article  PubMed  CAS  Google Scholar 

  27. Clarkson TB, Bond MG, Bullock BC, McLaughlin KJ, Sawyer JK. A study of atherosclerosis regression in Macaca mulatta. V. Changes in abdominal aorta and carotid and coronary arteries from animals with atherosclerosis induced for 38 months and then regressed for 24 or 48 months at plasma cholesterol concentrations of 300 or 200 mg/dl. Exp Mol Pathol. 1984;41(1):96–118.

    Article  PubMed  CAS  Google Scholar 

  28. Bond MG, Wilmoth SK, Gardin JF, Barnes RW, Sawyer JK. Noninvasive assessment of atherosclerosis in nonhuman primates. Adv Exp Med Biol. 1985;183:189–195.

    PubMed  CAS  Google Scholar 

  29. Bond MG, Wilmoth SK, Enevold GL, Strickland HL. Detection and monitoring of asymptomatic atherosclerosis in clinical trials. Am J Med. 1989;86(4A):33–36.

    PubMed  CAS  Google Scholar 

  30. Baldassarre D et al. Measurement of carotid artery intima-media thickness in dyslipidemic patients increases the power of traditional risk factors to predict cardiovascular events. Atherosclerosis. 2007;191(2):403–408.

    Article  PubMed  CAS  Google Scholar 

  31. Bots ML, Hoes AW, Koudstaal PJ, Hofman A, Grobbee DE. Common carotid intima-media thickness and risk of stroke and myocardial infarction: the Rotterdam study. Circulation. 1997;96(5):1432–1437.

    PubMed  CAS  Google Scholar 

  32. O’Leary DH et al. Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults. N Engl J Med. 1999;340:14–22.

    Article  PubMed  Google Scholar 

  33. Chambless LE et al. Carotid wall thickness is predictive of incident clinical stroke: the Atherosclerosis Risk in Communities (ARIC) study. Am J Epidemiol. 2000;151(5):478–487.

    PubMed  CAS  Google Scholar 

  34. Ebrahim S et al. Carotid plaque, intima media thickness, cardiovascular risk factors, and prevalent cardiovascular disease in men and women: the British Regional Heart study. Stroke. 1999;30(4):841–850.

    Article  PubMed  CAS  Google Scholar 

  35. Lorenz MW, von Kegler J, Steinmetz H, Markus H, Sitzer M. Carotid intima-media thickening indicates a higher vascular risk across a wide range: prospective data from the Carotid Atherosclerosis Progression Study (CAPS). Stroke. 2006;37:87–92.

    Article  PubMed  Google Scholar 

  36. Simon A, Megnien JL, Chironi G. The value of carotid intima-media thickness for predicting cardiovascular risk. Arterioscler Thromb Vasc Biol. 2009;30(2):182–185.

    Article  PubMed  CAS  Google Scholar 

  37. Lorenz MW, Markus HS, Bots ML, Rosvall M, Sitzer M. Prediction of clinical cardiovascular events with carotid intima-media thickness: a systematic review and meta-analysis. Circulation. 2007;115:459–467.

    Article  PubMed  Google Scholar 

  38. Bots ML et al. Carotid intima-media thickness and coronary atherosclerosis: weak or strong relations? Eur Heart J. 2007;28(4):398–406.

    Article  PubMed  Google Scholar 

  39. Prati P et al. Carotid intima media thickness and plaques can predict the occurrence of ischemic cerebrovascular events. Stroke. 2008;39(9):2470–2476.

    Article  PubMed  Google Scholar 

  40. Brook RD et al. A negative carotid plaque area test is superior to other non-invasive atherosclerosis studies for reducing the likelihood of having significant coronary artery disease. Arterioscler Thromb Vasc Biol. 2006;26:656–662.

    Article  PubMed  CAS  Google Scholar 

  41. Chan SY et al. The prognostic importance of endothelial dysfunction and carotid atheroma burden in patients with coronary artery disease. J Am Coll Cardiol. 2003;42(6):1037–1043.

    Article  PubMed  CAS  Google Scholar 

  42. Rundek T et al. Carotid plaque, a subclinical precursorof vascular events: the Northern Manhattan study. Neurology. 2008;70:1200–1207.

    Article  PubMed  CAS  Google Scholar 

  43. Barnett PA, Spence JD, Manuck SB, Jennings JR. Psychological stress and the progression of carotid artery disease. J Hypertens. 1997;15(1):49–55.

    Article  PubMed  CAS  Google Scholar 

  44. Persson J et al. Noninvasive quantification of atherosclerotic lesions. Reproducibility of ultrasonographic measurement of arterial wall thickness and plaque size. Arterioscler Thromb. 1992;12(2):261–266.

    Article  PubMed  CAS  Google Scholar 

  45. Mancini GB, Abbott D, Kamimura C, Yeoh E. Validation of a new ultrasound method for the measurement of carotid artery intima medial thickness and plaque dimensions. Can J Cardiol. 2004;20(13):1355–1359.

    PubMed  Google Scholar 

  46. Fosse E et al. Repeated visual and computer-assisted carotid plaque characterization in a longitudinal population-based ultrasound study: the Tromso study. Ultrasound Med Biol. 2006;32(1):3–11.

    Article  PubMed  Google Scholar 

  47. Spence JD et al. Carotid plaque area: a tool for targeting and evaluating vascular preventive therapy. Stroke. 2002;33:2916–2922.

    Article  PubMed  Google Scholar 

  48. Johnsen SH et al. Carotid atherosclerosis is a stronger predictor of myocardial infarction in women than in men: a 6-year follow-up study of 6226 persons: the Tromso study. Stroke. 2007;38(11):2873–2880.

    Article  PubMed  Google Scholar 

  49. Ainsworth CD et al. 3D ultrasound measurement of change in carotid plaque volume: a tool for rapid evaluation of new therapies. Stroke. 2005;36(9):1904–1909.

    Article  PubMed  Google Scholar 

  50. Egger M, Spence JD, Fenster A, Parraga G. Validation of 3D ultrasound vessel wall volume: an imaging phenotype of carotid atherosclerosis. Ultrasound Med Biol. 2007;33(6): 905–914.

    Article  PubMed  Google Scholar 

  51. Kuller L et al. Prevalence of subclinical atherosclerosis and cardiovascular disease and association with risk factors in the Cardiovascular Health study. Am J Epidemiol. 1994;139(12):1164–1179.

    PubMed  CAS  Google Scholar 

  52. Sharrett AR et al. Smoking, diabetes and blood cholesterol differ in their associations with subclinical atherosclerosis: the Multiethnic Study of Atherosclerosis (MESA). Atherosclerosis. 2005;186:441–447.

    Article  PubMed  CAS  Google Scholar 

  53. Heiss G et al. Carotid atherosclerosis measured by B-mode ultrasound in populations: associations with cardiovascular risk factors in the ARIC study. Am J Epidemiol. 1991;134(3): 250–256.

    PubMed  CAS  Google Scholar 

  54. Salonen R, Seppanen K, Rauramaa R, Salonen JT. Prevalence of carotid atherosclerosis and serum cholesterol levels in eastern Finland. Arteriosclerosis. 1988;8(6): 788–792.

    Article  PubMed  CAS  Google Scholar 

  55. Fine-Edelstein JS et al. Precursors of extracranial carotid atherosclerosis in the Framingham study. Neurology. 1994;44(6):1046–1050.

    PubMed  CAS  Google Scholar 

  56. Polak JF et al. Segment-specific associations of carotid intima-media thickness with cardiovascular risk factors: the Coronary Artery Risk Development in Young Adults (CARDIA) study. Stroke. 2010;41(1):9–15.

    Article  PubMed  Google Scholar 

  57. Malinow MR, Nieto FJ, Szklo M, Chambless LE, Bond G. Carotid artery intimal-medial wall thickening and plasma homocyst(e)ine in asymptomatic adults. The Atherosclerosis Risk in Communities study. Circulation. 1993;87(4):1107–1113.

    PubMed  CAS  Google Scholar 

  58. Rundek T et al. The metabolic syndrome and subclinical carotid atherosclerosis: the northern Manhattan study. J Cardiometab Syndr. 2007;2(1):24–29.

    Article  PubMed  Google Scholar 

  59. Elkind MS et al. Interleukin-2 levels are associated with carotid artery intima-media thickness. Atherosclerosis. 2005;180(1):181–187.

    Article  PubMed  CAS  Google Scholar 

  60. Melnick SL et al. Past infection by Chlamydia pneumoniae strain TWAR and asymptomatic carotid atherosclerosis. Atherosclerosis Risk in Communities (ARIC) study investigators. Am J Med. 1993;5:499–504.

    Article  Google Scholar 

  61. Johnsen SH, Mathiesen EB. Carotid plaque compared with intima-media thickness as a predictor of coronary and cerebrovascular disease. Curr Cardiol Rep. 2009;11(1): 21–27.

    Article  PubMed  Google Scholar 

  62. Spence JD et al. Plasma homocyst(e)ine, but not MTHFR genotype, is associated with variation in carotid plaque area. Stroke. 1999;30:969–973.

    Article  PubMed  CAS  Google Scholar 

  63. Hegele RA, Ban MR, Anderson CM, Spence JD. Infection-susceptibility alleles of mannose-binding lectin are associated with increased carotid plaque area. J Investig Med. 2003;48:198–202.

    Google Scholar 

  64. Nilsson TK et al. Quantitative measurement of carotid atherosclerosis in relation to levels of von Willebrand factor and fibrinolytic variables in plasma – a 2-year follow-up study. J Cardiovasc Risk. 2002;9(4):215–221.

    Article  PubMed  Google Scholar 

  65. Bhavsar S et al. Keloid scarring, but not Dupuytren’s contracture, is associated with unexplained carotid atherosclerosis. Clin Invest Med. 2009;32(2):E95-E102.

    PubMed  Google Scholar 

  66. Kronborg J et al. Proinsulin:insulin and insulin:glucose ratios as predictors of carotid plaque growth: a population-based 7 year follow-up of the Tromso study. Diabetologia. 2007;50(8):1607–1614.

    Article  PubMed  CAS  Google Scholar 

  67. Johnsen SH et al. Elevated high-density lipoprotein cholesterol levels are protective against plaque progression: a follow-up study of 1952 persons with carotid atherosclerosis the Tromso study. Circulation. 2005;112(4):498–504.

    Article  PubMed  CAS  Google Scholar 

  68. Halvorsen DS, Johnsen SH, Mathiesen EB, Njolstad I. The association between inflammatory markers and carotid atherosclerosis is sex dependent: the Tromso study. Cerebrovasc Dis. 2009;27(4):392–397.

    Article  PubMed  Google Scholar 

  69. Pollex RL et al. A comparison of ultrasound measurements to assess carotid atherosclerosis development in subjects with and without type 2 diabetes. Cardiovasc Ultrasound. 2005;3:15.

    Article  PubMed  Google Scholar 

  70. Lange LA et al. Heritability of carotid artery intima-medial thickness in type 2 diabetes. Stroke. 2002;33(7): 1876–1881.

    Article  PubMed  Google Scholar 

  71. Juo SH et al. Genetic and environmental contributions to carotid intima-media thickness and obesity phenotypes in the Northern Manhattan Family study. Stroke. 2004;35(10): 2243–2247.

    Article  PubMed  Google Scholar 

  72. Xiang AH et al. Heritability of subclinical atherosclerosis in Latino families ascertained through a hypertensive parent. Arterioscler Thromb Vasc Biol. 2002;22(5):843–848.

    Article  PubMed  CAS  Google Scholar 

  73. Fox CS et al. Genetic and environmental contributions to atherosclerosis phenotypes in men and women: heritability of carotid intima-media thickness in the Framingham Heart study. Stroke. 2003;34(2):397–401.

    Article  PubMed  Google Scholar 

  74. Chen YC et al. Carotid intima-media thickness (cIMT) cosegregates with blood pressure and renal function in hypertensive Hispanic families. Atherosclerosis. 2008;198(1): 160–165.

    Article  PubMed  CAS  Google Scholar 

  75. Manolio TA, Boerwinkle E, O’Donnell CJ, Wilson AF. Genetics of ultrasonographic carotid atherosclerosis. Arterioscler Thromb Vasc Biol. 2004;24(9):1567–1577.

    Article  PubMed  CAS  Google Scholar 

  76. Rundek T et al. Carotid intima-media thickness is associated with allelic variants of stromelysin-1, interleukin-6, and hepatic lipase genes: the Northern Manhattan Prospective Cohort study. Stroke. 2002;33(5):1420–1423.

    Article  PubMed  Google Scholar 

  77. O’Donnell CJ et al. Genome-wide association study for subclinical atherosclerosis in major arterial territories in the NHLBI’s Framingham Heart study. BMC Med Genet. 2007;8(suppl 1):S4.

    Article  PubMed  CAS  Google Scholar 

  78. Fox CS et al. Genomewide linkage analysis for internal carotid artery intimal medial thickness: evidence for linkage to chromosome 12. Am J Hum Genet. 2004;74(2):253–261.

    Article  PubMed  CAS  Google Scholar 

  79. Wang D et al. A genome-wide scan for carotid artery intima-media thickness: the Mexican-American Coronary Artery Disease family study. Stroke. 2005;36(3):540–545.

    Article  PubMed  CAS  Google Scholar 

  80. Sacco RL et al. Heritability and linkage analysis for carotid intima-media thickness: the family study of stroke risk and carotid atherosclerosis. Stroke. 2009;40(7):2307–2312.

    Article  PubMed  CAS  Google Scholar 

  81. Pollex RL, Hegele R. Genetic determinants of carotid ultrasound traits. Curr Atheroscler Rep. 2006;8(3): 206–215.

    Article  PubMed  CAS  Google Scholar 

  82. Yasuda H et al. Association of single nucleotide polymorphisms in endothelin family genes with the progression of atherosclerosis in patients with essential hypertension. J Hum Hypertens. 2007;21(11):883–892.

    Article  PubMed  CAS  Google Scholar 

  83. Lehtinen AB et al. Association of alpha2-Heremans-Schmid glycoprotein polymorphisms with subclinical atherosclerosis. J Clin Endocrinol Metab. 2007;92(1):345–352.

    Article  PubMed  CAS  Google Scholar 

  84. Pankow JS et al. Familial aggregation and genome-wide linkage analysis of carotid artery plaque: the NHLBI family heart study. Hum Hered. 2004;57(2):80–89.

    Article  PubMed  CAS  Google Scholar 

  85. Spence JD, Ban MR, Hegele RA. Lipoprotein lipase (LPL) gene variation and progression of carotid artery plaque. Stroke. 2003;34:1178–1182.

    Google Scholar 

  86. Spence JD, Barnett PA, Bulman DE, Hegele RA. An approach to ascertain probands with a non traditional risk factor for carotid atherosclerosis. Atherosclerosis. 1999;144:429–434.

    Article  PubMed  CAS  Google Scholar 

  87. Spence JD. Technology Insight: ultrasound measurement of carotid plaque – patient management, genetic research, and therapy evaluation. Nat Clin Pract Neurol. 2006;2(11): 611–619.

    Article  PubMed  Google Scholar 

  88. Schork NJ, Nath SK, Fallin D, Chakravarti A. Linkage disequilibrium analysis of biallelic DNA markers, human. Am J Hum Genet. 2000;67(5):1208–1218.

    Article  PubMed  CAS  Google Scholar 

  89. Malo N, Libiger O, Schork NJ. Accommodating linkage disequilibrium in genetic-association analyses via ridge regression. Am J Hum Genet. 2008;82(2):375–385.

    Article  PubMed  CAS  Google Scholar 

  90. Al Shali KZ et al. Genetic variation in PPARG encoding peroxisome proliferator-activated receptor gamma associated with carotid atherosclerosis. Stroke. 2004;35(9): 2036–2040.

    Article  Google Scholar 

  91. Bots ML, Evans GW, Riley WA, Grobbee DE. Carotid intima-media thickness measurements in intervention studies: design options, progression rates, and sample size considerations: a point of view. Stroke. 2003;34(12):2985–2994.

    Article  PubMed  Google Scholar 

  92. Hackam DG, Peterson JC, Spence JD. What level of plasma homocyst(e)ine should be treated? Effects of vitamin therapy on progression of carotid atherosclerosis in patients with homocyst(e)ine levels above and below 14 mol/L. Am J Hypertens. 2000;13:105–110.

    Article  PubMed  CAS  Google Scholar 

  93. Krasinski A, Chiu B, Spence JD, Fenster A, Parraga G. Three-dimensional ultrasound quantification of intensive statin treatment of carotid atherosclerosis. Ultrasound Med Biol. 2009;35:1763–1772.

    Article  PubMed  Google Scholar 

  94. Hegele RA et al. Disparate associations of a functional promoter polymorphism in PCK1 with carotid wall ultrasound traits. Stroke. 2005;36(12):2566–2570.

    Article  PubMed  CAS  Google Scholar 

  95. Cao H et al. Promoter polymorphism in PCK1 (phosphoenolpyruvate carboxykinase gene) associated with type 2 diabetes mellitus. J Clin Endocrinol Metab. 2004;89(2): 898–903.

    Article  PubMed  CAS  Google Scholar 

  96. Pollex RL, Hegele RA. Genetic determinants of carotid ultrasound traits. Curr Atheroscler Rep. 2006;8:206–215.

    Article  PubMed  CAS  Google Scholar 

  97. Wang JG et al. Carotid intima-media thickness and antihypertensive treatment: a meta-analysis of randomized controlled trials. Stroke. 2006;37(7):1933–1940.

    Article  PubMed  CAS  Google Scholar 

  98. Zanchetti A et al. Baseline values but not treatment-induced changes in carotid intima-media thickness predict incident cardiovascular events in treated hypertensive patients: findings in the European Lacidipine Study on Atherosclerosis (ELSA). Circulation. 2009;120(12):1084–1090.

    Article  PubMed  Google Scholar 

  99. Peterson JC, Spence JD. Vitamins and progression of atherosclerosis in hyper-homocyst(e)inaemia [letter]. Lancet. 1998;351(9098):263.

    Article  PubMed  CAS  Google Scholar 

  100. Ranke C, Hecker H, Creutzig A, Alexander K. Dose-dependent effect of aspirin on carotid atherosclerosis. Circulation. 1993;87:1873–1879.

    PubMed  CAS  Google Scholar 

  101. Kastelein JJ et al. Simvastatin with or without ezetimibe in familial hypercholesterolemia. N Engl J Med. 2008;358(14): 1431–1443.

    Article  PubMed  CAS  Google Scholar 

  102. Taylor AJ et al. Extended-release niacin or ezetimibe and carotid intima-media thickness. N Engl J Med. 2009;361(22): 2113–2122.

    Article  PubMed  CAS  Google Scholar 

  103. Spence JD. Is carotid intima-media thickness a reliable clinical predictor? Mayo Clin Proc. 2008;83(11):1299–1300.

    Article  PubMed  Google Scholar 

  104. Spence JD. The importance of distinguishing between diffuse carotid intima medial thickening and focal plaque. Can J Cardiol. 2008;24(suppl C):61C-64C.

    Article  Google Scholar 

  105. Spence JD, Hackam DG. Treating arteries instead of risk factors: a paradigm change in management of atherosclerosis. Stroke. 2010;41(6):1193–1199.

    Article  PubMed  Google Scholar 

  106. Spence JD et al. Effects of intensive medical therapy on microemboli and cardiovascular risk in asymptomatic carotid stenosis. Arch Neurol. 2010;67(2):180–186.

    Article  PubMed  Google Scholar 

  107. Spence JD. Adding ezetimibe to statin halts progression of carotid plaque. Basic Clin Pharmacol Toxicol. 2010;107(suppl 1):2194.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Spence, J.D., Rundek, T. (2011). Toward Clinical Applications of Carotid Ultrasound: Intima-Media Thickness, Plaque Area, and Three-Dimensional Phenotypes. In: Nicolaides, A., Beach, K., Kyriacou, E., Pattichis, C. (eds) Ultrasound and Carotid Bifurcation Atherosclerosis. Springer, London. https://doi.org/10.1007/978-1-84882-688-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-688-5_25

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-687-8

  • Online ISBN: 978-1-84882-688-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics