Skip to main content

Automated Measurement of Carotid Artery Intima-Media Thickness

  • Chapter
  • First Online:

Abstract

Atherosclerosis is a degenerative process that, during years, leads to the accumulation of lipids and other blood-borne materials into the arterial walls.1 The most important consequences correlated to the progression of atherosclerosis are: (1) the narrowing of the artery lumen, (2) the thickening of the wall, (3) the loss of elasticity, and (4) the reduction of the artery blood flow.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Badimon JJ, Ibanez B, Cimmino G. Genesis and dynamics of atherosclerotic lesions: implications for early detection. Cerebrovasc Dis. 2009;27(suppl 1):38–47.

    Article  PubMed  Google Scholar 

  2. World Health Organization. Cardiovascular diseases [Internet]. 2011. Available at: http://www.who.int/cardiovascular_diseases/en/. Cited April 5, 2011.

  3. Touboul PJ et al. Mannheim intima-media thickness consensus. Cerebrovasc Dis. 2004;18:346–349.

    Article  PubMed  Google Scholar 

  4. van der Meer IM et al. Predictive value of noninvasive measures of atherosclerosis for incident myocardial infarction: the Rotterdam Study. Circulation. 2004;109: 1089–1094.

    Article  PubMed  Google Scholar 

  5. Touboul PJ et al. Mannheim carotid intima-media thickness consensus (2004-2006). An update on behalf of the Advisory Board of the 3rd and 4th watching the risk symposium, 13th and 15th European stroke conferences, Mannheim, Germany, 2004, and Brussels, Belgium, 2006. Cerebrovasc Dis. 2007;23:75–80.

    Article  PubMed  Google Scholar 

  6. Schmidt C, Wendelhag I. How can the variability in ultrasound measurement of intima-media thickness be reduced? Studies of interobserver variability in carotid and femoral arteries. Clin Physiol. 1999;19:45–55.

    Article  PubMed  CAS  Google Scholar 

  7. Touboul PJ et al. Use of monitoring software to improve the measurement of carotid wall thickness by B-mode imaging. J Hypertens Suppl. 1992;10:S37–S41.

    Article  PubMed  CAS  Google Scholar 

  8. Pignoli P, Longo T. Evaluation of atherosclerosis with B-mode ultrasound imaging. J Nucl Med Allied Sci. 1988;32:166–173.

    PubMed  CAS  Google Scholar 

  9. Molinari F, Zeng G, Suri JS. A state of the art review on intima-media thickness (IMT) measurement and wall segmentation techniques for carotid ultrasound. Comput Methods Programs Biomed. 2010;100(3):201–221.

    Article  PubMed  Google Scholar 

  10. Faita F et al. Real-time measurement system for evaluation of the carotid intima-media thickness with a robust edge operator. J Ultrasound Med. 2008;27:1353–1361.

    PubMed  Google Scholar 

  11. Stein JH et al. A semiautomated ultrasound border detection program that facilitates clinical measurement of ultrasound carotid intima-media thickness. J Am Soc Echocardiogr. 2005;18:244–251.

    Article  PubMed  Google Scholar 

  12. Molinari F, Liboni W, Giustetto P, Badalamenti S, Suri JS. Automatic computer-based tracings (ACT) in longitudinal 2-D ultrasound images using different scanners. J Mech Med Biol. 2009;9:481–505.

    Article  Google Scholar 

  13. Molinari F, Zeng G, Suri JS. An integrated approach to computer- based automated tracing and its validation for 200 common carotid arterial wall ultrasound images: a new technique. J Ultrasound Med. 2010;29:399–418.

    PubMed  Google Scholar 

  14. Molinari F, Zeng G, Suri J. Automatic Recognition and Validation of the Common Carotid Artery Wall Segmentation in 100 Longitudinal Ultrasound Images: An Integrated Approach Using Feature Selection, Fitting & Classification. SPIE Medical Imaging 2009: Image Processing; San Diego, SPIE, 2009: 1–10.

    Google Scholar 

  15. Molinari F, Zeng G, Suri JS. Intima-media thickness: setting a standard for completely automated method for ultrasound. IEEE Trans Ultrason Ferroelectr Freq Control. 2010;57:1112–1124.

    Article  PubMed  Google Scholar 

  16. Delsanto S, Molinari F, Giustetto P, Liboni W, Badalamenti S. CULEX-completely user-independent layers extraction: ultrasonic carotid artery images segmentation. Conf Proc IEEE Eng Med Biol Soc. 2005;6:6468–6471.

    PubMed  Google Scholar 

  17. Delsanto S et al. Characterization of a completely user-independent algorithm for carotid artery segmentation in 2-D ultrasound images. IEEE Trans Instrum Meas. 2007;56:1265–1274.

    Article  Google Scholar 

  18. Molinari F et al. User-independent plaque segmentation and accurate intima-media thickness measurement of carotid artery wall using ultrasound. In: Suri JS, Kathuria C, Chang R-F, Molinari F, Fenster A, eds. Advances in Diagnostic and Therapeutic Ultrasound Imaging. Norwood: Artech House; 2008:111–140.

    Google Scholar 

  19. Golemati S, Stoitsis J, Balkizas T, Nikita K. Comparison of B-mode, M-mode and Hough transform methods for measurement of arterial diastolic and systolic diameters. Conf Proc IEEE Eng Med Biol Soc. 2005;2:1758–1761.

    PubMed  CAS  Google Scholar 

  20. Golemati S, Stoitsis J, Sifakis EG, Balkizas T, Nikita KS. Using the Hough transform to segment ultrasound images of longitudinal and transverse sections of the carotid artery. Ultrasound Med Biol. 2007;33:1918–1932.

    Article  PubMed  Google Scholar 

  21. Rossi AC, Brands PJ, Hoeks AP. Automatic recognition of the common carotid artery in longitudinal ultrasound B-mode scans. Med Image Anal. 2008;12:653–665.

    Article  PubMed  Google Scholar 

  22. Touboul PJ et al. Carotid artery intima media thickness, plaque and Framingham cardiovascular score in Asia, Africa/Middle East and Latin America: the PARC-AALA study. Int J Cardiovasc Imaging. 2007;23:557–567.

    Article  PubMed  Google Scholar 

  23. Liguori C, Paolillo A, Pietrosanto A. An automatic measurement system for the evaluation of carotid intima-media thickness. IEEE Trans Instrum Meas. 2001;50:1684–1691.

    Article  Google Scholar 

  24. Cheng DC, Schmidt-Trucksass A, Cheng KS, Burkhardt H. Using snakes to detect the intimal and adventitial layers of the common carotid artery wall in sonographic images. Comput Methods Programs Biomed. 2002;67:27–37.

    Article  PubMed  Google Scholar 

  25. Delsanto S et al. User-independent plaque characterization and accurate IMT measurement of carotid artery wall using ultrasound. Conf Proc IEEE Eng Med Biol Soc. 2006;1:2404–2407.

    Article  PubMed  Google Scholar 

  26. Loizou CP, Pantziaris M, Pattichis MS, Kyriacou E, Pattichis CS. Ultrasound image texture analysis of the intima and media layers of the common carotid artery and its correlation with age and gender. Comput Med Imaging Graph. 2009;33:317–324.

    Article  PubMed  CAS  Google Scholar 

  27. Loizou CP, Pattichis CS, Nicolaides AN, Pantziaris M. Manual and automated media and intima thickness measurements of the common carotid artery. IEEE Trans Ultrason Ferroelectr Freq Control. 2009;56:983–994.

    Article  PubMed  Google Scholar 

  28. Loizou CP, Pattichis CS, Pantziaris M, Tyllis T, Nicolaides A. Snakes based segmentation of the common carotid artery intima media. Med Biol Eng Comput. 2007;45:35–49.

    Article  PubMed  CAS  Google Scholar 

  29. Mao F, Gill J, Downey D, Fenster A. Segmentation of carotid artery in ultrasound images: method development and evaluation technique. Med Phys. 2000;27:1961–1970.

    Article  PubMed  CAS  Google Scholar 

  30. Williams DJ, Shah M. A fast algorithm for active contours and curvature estimation. CVGIP Image Underst. 1992;55:14–26.

    Article  Google Scholar 

  31. Wendelhag I, Liang Q, Gustavsson T, Wikstrand J. A new automated computerized analyzing system simplifies readings and reduces the variability in ultrasound measurement of intima-media thickness. Stroke. 1997;28: 2195–2200.

    Article  PubMed  CAS  Google Scholar 

  32. Wendelhag I, Wiklund O, Wikstrand J. Arterial wall thickness in familial hypercholesterolemia. Ultrasound measurement of intima-media thickness in the common carotid artery. Arterioscler Thromb. 1992;12:70–77.

    Article  PubMed  CAS  Google Scholar 

  33. Wendelhag I, Gustavsson T, Suurkula M, Berglund G, Wikstrand J. Ultrasound measurement of wall thickness in the carotid artery: fundamental principles and description of a computerized analysing system. Clin Physiol. 1991;11:565–577.

    Article  PubMed  CAS  Google Scholar 

  34. Wendelhag I, Wiklund O, Wikstrand J. On quantifying plaque size and intima-media thickness in carotid and femoral arteries. Comments on results from a prospective ultrasound study in patients with familial hypercholesterolemia. Arterioscler Thromb Vasc Biol. 1996;16:843–850.

    Article  PubMed  CAS  Google Scholar 

  35. Furberg CD, Byington RP, Craven TE. Lessons learned from clinical trials with ultrasound end-points. J Intern Med. 1994;236:575–580.

    Article  PubMed  CAS  Google Scholar 

  36. Liang Q, Wendelhag I, Wikstrand J, Gustavsson T. A multiscale dynamic programming procedure for boundary detection in ultrasonic artery images. IEEE Trans Med Imaging. 2000;19:127–142.

    Article  PubMed  CAS  Google Scholar 

  37. Suri JS, Haralick RM, Sheehan FH. Greedy algorithm for error correction in automatically produced boundaries from low contrast ventriculograms. Pattern Anal Appl. 2000;3:39–60.

    Article  Google Scholar 

  38. Verbeek JJ, Vlassis N, Krose B. Efficient greedy learning of Gaussian mixture models. Neural Comput. 2003;15: 469–485.

    Article  PubMed  CAS  Google Scholar 

  39. Molinari F, Zeng G, Suri J. Greedy technique and its validation for fusion of two segmentation paradigms leads to an accurate intima-media thickness measure in plaque carotid arterial ultrasound. J Vasc Ultrasound. 2010;34(2):63–73.

    Google Scholar 

  40. Chalana V, Kim Y. A methodology for evaluation of boundary detection algorithms on medical images. IEEE Trans Med Imaging. 1997;16:642–652.

    Article  PubMed  CAS  Google Scholar 

  41. Alberola-Lopez C, Martin-Fernandez M, Ruiz-Alzola J. Comments on: a methodology for evaluation of boundary detection algorithms on medical images. IEEE Trans Med Imaging. 2004;23:658–660.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Molinari, F., Suri, J.S. (2011). Automated Measurement of Carotid Artery Intima-Media Thickness. In: Nicolaides, A., Beach, K., Kyriacou, E., Pattichis, C. (eds) Ultrasound and Carotid Bifurcation Atherosclerosis. Springer, London. https://doi.org/10.1007/978-1-84882-688-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-688-5_11

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-687-8

  • Online ISBN: 978-1-84882-688-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics