Skip to main content

Characterization

  • Chapter
  • 2414 Accesses

Part of the book series: Engineering Materials and Processes ((EMP))

Abstract

In order to relate the physical properties to the size, shape and crystallinity of nanoobjects an accurate and detailed characterization has to be performed. The determination of the size and shape distribution of nanometer size particles can be addressed with several techniques like for example: analytical ultracentrifugation (AUC) [3], light scattering techniques, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) [50, 51, 52, 19, 21] etc. The most common tools for the structural characterization of nanoobjects are high resolution TEM (HRTEM) and diffraction techniques such as electron diffraction (ED) and powder X-ray diffraction (XRD). HRTEM permits to directly visualize the atomic columns of a single particle and to determine its structure and possible structural defects. However, this method is not statistically applicable to a large amount of particles. Powder XRD measurements are able to overcome this limitation and provide a global information about the crystallinity of a sample, thus making it a perfect complementary technique to HRTEM. This chapter mainly focuses on the characterization of inorganic nanoobjects by electron microscopy and diffraction techniques. Additional useful and widely used characterization techniques such as Fourier transform infrared (FT-IR) and solid state nuclear magnetic resonance (SSNMR) will also be discussed in a particular example.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Batson P.E. and Dellby, N.K.O.: Sub-angstrom resolution using aberation corrected electron optics. Nature 418, 617–620 (2002)

    Article  Google Scholar 

  2. Chiche, D., Digne, M., Revel, R., Chaneac, C., Jolivet, J.P.: Accurate determination of oxide nanoparticle size and shape based on X-ray powder pattern simulation: Application to boehmite AlOOH. J. Phys. Chem. C 112, 8524–8533 (2008)

    Article  Google Scholar 

  3. Coelfen, H., Pauck, T.: Determination of particle size distributions with angstrom resolution. Colloid Polym. Sci. 275, 175–180 (1997)

    Article  Google Scholar 

  4. Cowley, J.M., Moodie, A.F.: The scattering of electrons by atoms and crystals. I. A new theoretical approach. Acta Cryst. 10, 609–619 (1957)

    Article  MathSciNet  Google Scholar 

  5. Deacon, G.B., Phillips, R.J.: Relationships between the carbon-oxygen stretching frequencies of carboxylate complexes and the type of carboxylate coordination. Coord. Chem. Rev. 33, 227–250 (1980)

    Article  Google Scholar 

  6. Debye, P.: Zerstreuung von Röntgenstrahlen. Ann. Phys. 351, 809–823 (1915)

    Article  Google Scholar 

  7. Djerdj, I., Arcon, D., Jaglicic, Z., Niederberger, M.: Nonaqueous synthesis of manganese oxide nanoparticles, structural characterization, and magnetic properties. J. Phys. Chem. C 111, 3614–3623 (2007)

    Article  Google Scholar 

  8. Djerdj, I., Sheptyakov, D., Gozzo, F., Arcon, D., Nesper, R., Niederberger, M.: Oxygen self-doping in hollandite-type vanadium oxyhydroxide nanorods. J. Am. Chem. Soc. 130, 11,364–11,375 (2008)

    Article  Google Scholar 

  9. Garnweitner, G., Smarsly, B., Assink, R., Ruland, W., Bond, E., Brinker, C.J.: Self-assembly of an environmentally responsive polymer/silica nanocomposite. J. Am. Chem. Soc. 125, 5626–5627 (2003)

    Article  Google Scholar 

  10. Gnutzmann, V., Vogel, W.: Structural sensitivity of the standard platinum/silica catalyst EuroPt-1 to hydrogen and oxygen exposure by in situ X-ray diffraction. J. Phys. Chem. 94, 4991–4997 (1990)

    Article  Google Scholar 

  11. Guinier, A.: X-ray diffraction in crystals, imperfect crystals, and amorphous bodies. Dover, New York (1994)

    Google Scholar 

  12. Hall, B.: Debye function analysis of structure in diffraction from nanometer-sized particles. J. Appl. Phys. 87, 1666–1675 (2000)

    Article  Google Scholar 

  13. Hall, B., Monot, R.: Calculating the Debye-Scherrer diffraction pattern for large clusters. Comp. in Phys. 5, 414–417 (1991)

    Article  Google Scholar 

  14. Hall, B.D., Ugarte, D., Reinhard, D., Monot, R.: Calculations of the dynamic Debye-Scherrer diffraction patterns for small metal particles. J. Chem. Phys. 103, 2384–2394 (1995)

    Article  Google Scholar 

  15. Karmaoui, M., Mafra, L., Sá Ferreira, R.A., Rocha, J., Carlos, L.D., Pinna, N.: Photoluminescent rare-earth based biphenolate lamellar nanostructures. J. Phys. Chem. C 111, 2539–2544 (2007)

    Article  Google Scholar 

  16. Karmaoui, M., Sá Ferreira, R.A., Carlos, L.D., Pinna, N.: Lanthanide-based lamellar nanohybrids: The case of erbium. Mater. Sci. Eng. C 27, 1368–1371 (2007)

    Article  Google Scholar 

  17. Karmaoui, M., Sá Ferreira, R.A., Mane, A.T., Carlos, L.D., Pinna, N.: Lanthanide-based lamellar nanohybrids: Synthesis, structural characterization, and optical properties. Chem. Mater. 18, 4493–4499 (2006)

    Article  Google Scholar 

  18. Keys, R.J., Garratt-Reed, A.J., Goodhew, P.J., Lorimer, G.W.: Introduction to scanning transmission electron microscopy. Bios Scientific Publishers, Oxford (1997)

    Google Scholar 

  19. Liu, J.: Advanced electron microscopy characterization of nanostructured heterogeneous catalysts. Microsc. Microanal. 10, 55–76 (2004)

    Google Scholar 

  20. Merwin, L.H., Sebald, A.: The first yttrium-89 CP-MAS spectra. J. Magn. Res. 88, 167–171 (1990)

    Google Scholar 

  21. Meurig Thomas, J., Midgley, P.A.: High-resolution transmission electron microscopy: The ultimate nanoanalytical technique. Chem. Commun. pp. 1253–1267 (2004)

    Google Scholar 

  22. Nakamoto, K.: Infrared and Raman spectra of inorganic and coordination compounds part B. Wiley, New York (1997)

    Google Scholar 

  23. Neri, G., Bonavita, A., Micali G. Rizzo, G., Pinna, N., Niederberger, M., Ba, J.: Effect of the chemical composition on the sensing properties of In2O3-SnO2 nanoparticles synthesized by a non-aqueous method. Sens. Actuators B 130, 222–230 (2008)

    Article  Google Scholar 

  24. Neri, G., Bonavita, A., Rizzo, G., Galvagno, S., Pinna, N., Niederberger, M., Capone, S., Siciliano, P.: Towards enhanced performances in gas sensing: SnO2 based nanocrystalline oxides application. Sens. Actuators B 122, 564–571 (2007)

    Article  Google Scholar 

  25. Niederberger, M., Bartl, M.H., Stucky, G.D.: Benzyl alcohol and titanium tetrachloride: A versatile reaction system for the nonaqueous and low-temperature preparation of crystalline and luminescent titania nanoparticles. Chem. Mater. 14, 4364–4370 (2002)

    Article  Google Scholar 

  26. Niederberger, M., Pinna, N., Polleux, J., Antonietti, M.: A general soft chemistry route to perovskites and related materials: Synthesis of BaTiO3, BaZrO3 and LiNbO3 nanoparticles. Angew. Chem. Int. Ed. 43, 2270–2273 (2004)

    Article  Google Scholar 

  27. O’Keefe, M., Hetherington, C., Wang, Y., Nelson, E., Turner, J., Kisielowski, C., Malm, J.O., Mueller, R., Ringnalda, J., Pan, M., Thust, A.: Sub-angstrom high-resolution transmission electron microscopy at 300 keV. Ultramicroscopy 89, 215–241 (2001)

    Article  Google Scholar 

  28. Ould-Ely, T., Prieto-Centurion, D., Kumar, A., Guo, W., Knowles, W., Asokan, S., Wong, M., Rusakova, I., Luttge, A., Whitmire, K.: Manganese(II) oxide nanohexapods: Insight into controlling the form of nanocrystals. Chem. Mater. 18, 1821–1829 (2006)

    Article  Google Scholar 

  29. Patterson, A.L.: The Scherrer formula for X-ray particle size determination. Phys. Rev. 56, 978–982 (1939)

    Article  MATH  Google Scholar 

  30. Petkov, V., Gateshki, M., Niederberger, M., Ren, Y.: Atomic-scale structure of nanocrystalline Ba x Sr1−x TiO3 (x=1, 0.5, 0) by X-ray diffraction and the atomic pair distribution function technique. Chem. Mater. 18, 814–821 (2006)

    Article  Google Scholar 

  31. Pinna, N.: X-ray diffraction from nanocrystals. Progr. Colloid Polym. Sci. 130, 29–32 (2005)

    Google Scholar 

  32. Pinna, N., Antonietti, M., Niederberger, M.: A novel nonaqueous route to V2O3 and Nb2O5 nanocrystals. Colloids Surf., A 250, 211–213 (2004)

    Article  Google Scholar 

  33. Pinna, N., Garnweitner, G., Antonietti, M., Niederberger, M.: Non-aqueous synthesis of high-purity metal oxide nanopowders using an ether elimination process. Adv. Mater. 16, 2196–2200 (2004)

    Article  Google Scholar 

  34. Pinna, N., Garnweitner, G., Beato, P., Niederberger, M., Antonietti, M.: Synthesis of yttria-based crystalline and lamellar nanostructures and their formation mechanism. Small 1, 112–121 (2005)

    Article  Google Scholar 

  35. Pinna, N., Grancharov, S., Beato, P., Bonville, P., Antonietti, M., Niederberger, M.: Magnetite nanocrystals: Nonaqueous synthesis, characterization, and solubility. Chem. Mater. 17, 3044–3049 (2005)

    Article  Google Scholar 

  36. Pinna, N., Neri, G., Antonietti, M., Niederberger, M.: Nonaqueous synthesis of nanocrystalline semiconducting metal oxides for gas sensing. Angew. Chem. Int. Ed. 43, 4345–4349 (2004)

    Article  Google Scholar 

  37. Pinna, N., Wild, U., Urban, J., Schlogl, R.: Divanadium pentoxide nanorods. Adv. Mater. 15, 329–331 (2003)

    Article  Google Scholar 

  38. Polleux, J., Pinna, N., Antonietti, M., Hess, C., Wild, U., Schlogl, R., Niederberger, M.: Ligand functionality as a versatile tool to control the assembly behavior of preformed titania nanocrystals. Chem. Eur. J. 11, 3541–3551 (2005)

    Article  Google Scholar 

  39. Polleux, J., Pinna, N., Antonietti, M., Niederberger, M.: Ligand-directed assembly of preformed titania nanocrystals into highly anisotropic nanostructures. Adv. Mater. 16, 436–439 (2004)

    Article  Google Scholar 

  40. Polleux, J., Pinna, N., Antonietti, M., Niederberger, M.: Growth and assembly of crystalline tungsten oxide nanostructures assisted by bioligation. J. Am. Chem. Soc. 127, 15,595–15,601 (2005)

    Article  Google Scholar 

  41. Rietveld, H.M.: A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 65–71 (1969)

    Article  Google Scholar 

  42. Ruland, W., Smarsly, B.: SAXS of self-assembled nanocomposite films with oriented two-dimensional cylinder arrays: An advanced method of evaluation. J. Appl. Crystallogr. 38, 78–86 (2005)

    Article  Google Scholar 

  43. Ruska, E.: The development of the electron microscope and of electron microscopy. Rev. Mod. Phys. 59, 627–638 (1987)

    Article  Google Scholar 

  44. Sá Ferreira, R.A., Karmaoui, M., Nobre, S.S., Carlos, L.D., Pinna, N.: Optical properties of lanthanide-doped lamellar nanohybrids. Chem. Phys. Chem. 7, 2215–2222 (2006)

    Google Scholar 

  45. Scherrer, P.: Göttinger Nachrichten (1918)

    Google Scholar 

  46. Toby, B.H., Egami, T.: Accuracy of pair distribution function analysis applied to crystalline and non-crystalline materials. Acta Cryst. A 48, 336–346 (1992)

    Article  Google Scholar 

  47. Urban, J.: Crystallography of clusters. Cryst. Res. Technol. 33, 1009–1024 (1998)

    Article  Google Scholar 

  48. Van Dyck, D.: Electron microscopy: Principles and fundamentals, chap. High-resolution electron microscopy, pp. 109–162. Wiley-VCH (1997)

    Google Scholar 

  49. Vogel, W.: X-ray diffraction from clusters. Cryst. Res. Technol. 33, 1141–1154 (1998)

    Article  Google Scholar 

  50. Wang, Z.: Characterization of nanophase materials. Wiley-VCH, Weinheim (1999)

    Book  Google Scholar 

  51. Wang, Z.L.: Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. J. Phys. Chem. B 104, 1153–1175 (2000)

    Article  Google Scholar 

  52. Wang, Z.L.: New developments in TEM for nanotechnology. Adv. Mater. 15, 1497–1514 (2003)

    Article  Google Scholar 

  53. Warren, B.: X-ray diffraction. Dover, New York (1990)

    Google Scholar 

  54. Zanchet, D., Hall, B.D., Ugarte, D.: Structure population in thiol-passivated gold nanoparticles. J. Phys. Chem. B 104, 11,013–11,018 (2000)

    Article  Google Scholar 

  55. Zhong, X., Xie, R., Sun, L., Lieberwirth, I., Knoll, W.: Synthesis of dumbbell-shaped manganese oxide nanocrystals. J. Phys. Chem. B 110, 2–4 (2006)

    Article  Google Scholar 

  56. Zitoun, D., Pinna, N., Frolet, N., Belin, C.: Single crystal manganese oxide multipods by oriented attachment. J. Am. Chem. Soc. 127, 15,034–15,035 (2005)

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag London Limited

About this chapter

Cite this chapter

(2009). Characterization. In: Metal Oxide Nanoparticles in Organic Solvents. Engineering Materials and Processes. Springer, London. https://doi.org/10.1007/978-1-84882-671-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-671-7_7

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-670-0

  • Online ISBN: 978-1-84882-671-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics