Aqueous and Nonaqueous Sol-Gel Chemistry

Part of the Engineering Materials and Processes book series (EMP)


The most widely used synthetic technique for bulk metal oxides has been the ceramic method, which is based on the direct reaction of powder mixtures. These reactions are completely controlled by the diffusion of the atomic or ionic species through the reactants and products. To bring the reaction partners sufficiently close together and to provide high mobility, these solid state processes require high temperature and small particle sizes. Although the harsh reaction conditions only lead to thermodynamically stable phases, preventing the formation of metastable solids, these approaches gave access to a large number of new solid compounds, enabling the development of structureproperties relationships. However, in comparison to organic chemistry, where highly sophisticated synthetic pathways are employed to make and break chemical bonds in a controlled way, the ceramic method is a rather crude approach. It is therefore no surprise that for the size- and shape-controlled synthesis of nanoparticles especially liquid-phase routes represent the most promising alternatives. In contrast to solid-state processes, but analogous to organic chemistry, “chimie douce” approaches offer the possibility to control the reaction pathways on a molecular level during the transformation of the precursor species to the final product, enabling the synthesis of nanoparticles with well-defined and uniform crystal morphologies and with superior purity and homogeneity [12].


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Acosta, S., Arnal, P., Corriu, R.J.P., Leclercq, D., Mutin, P.H., Vioux, A.: A general nonhydrolytic sol-gel route to oxides. Mater. Res. Soc. Symp. Proc. 346, 43–64 (1994)Google Scholar
  2. 2.
    Arnal, P., Corriu, R.J.P., Leclercq, D., Mutin, P.H., Vioux, A.: Preparation of transition metal oxides by a nonhydrolytic sol-gel process. Mater. Res. Soc. Symp. Proc. 346, 339–344 (1994)Google Scholar
  3. 3.
    Bates, S.E., Buhro, W.E.: Aldolate complexes as thermal precursors to metal-oxides - a new nonhydrolytic sol-gel strategy. Abstr. Pap. Am. Chem. Soc. 205, 83INOR (1993)Google Scholar
  4. 4.
    Bibby, D.M., Dale, M.P.: Synthesis of silica-sodalite from non-aqueous systems. Nature 317, 157–158 (1985)CrossRefGoogle Scholar
  5. 5.
    Borm, P.J.A., Robbins, D., Haubold, S., Kuhlbusch, T., Fissan, H., Donaldson, K., Schins, R., Stone, V., Kreyling, W., Lademann, J., Krutmann, J., Warheit, D., Oberdorster, E.: The potential risk of nanomaterials: A review carried out for ECETOC. Part. Fibre Toxicol. 3, 11–45 (2006)CrossRefGoogle Scholar
  6. 6.
    Bradley, D.C., Mehrotra, R.C., Rothwell, I.P., Singh, A.: Alkoxo and aryloxo derivatives of metals. Academic Press: London (2001)Google Scholar
  7. 7.
    Brinker, C.J., Scherer, G.W.: Sol-gel science. Academic Press, San Diego (1990)Google Scholar
  8. 8.
    Corriu, R., Leclercq, D., Lefevre, P., Mutin, P.H., Vioux, A.: Preparation of monolithic binary oxide gels by a nonhydrolytic sol-gel process. Chem. Mater. 4, 961–963 (1992)CrossRefGoogle Scholar
  9. 9.
    Corriu, R.J.P., Leclercq, D.: Recent developments of molecular chemistry for sol-gel processes. Angew. Chem. Int. Ed. 35, 1420–1436 (1996)CrossRefGoogle Scholar
  10. 10.
    Corriu, R.J.P., Leclercq, D., Lefevre, P., Mutin, P.H., Vioux, A.: Preparation of monolithic gels from silicon halides by a non-hydrolytic sol-gel process. J. Non-Cryst. Solids 146, 301–303 (1992)CrossRefGoogle Scholar
  11. 11.
    Corriu, R.J.P., Leclercq, D., Lefevre, P., Mutin, P.H., Vioux, A.: Preparation of monolithic metal-oxide gels by a non-hydrolytic sol-gel process. J. Mater. Chem. 2, 673–674 (1992)CrossRefGoogle Scholar
  12. 12.
    Cushing, B.L., Kolesnichenko, V.L., O’Connor, C.J.: Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem. Rev. 104, 3893–3946 (2004)CrossRefGoogle Scholar
  13. 13.
    Dearing, A.W., Reid, E.E.: Alkyl orthosilicates. J. Am. Chem. Soc. 50, 3058–3062 (1928)CrossRefGoogle Scholar
  14. 14.
    Ebelmen: Untersuchungen über die Verbindungen der Borsäure und Kieselsäure mit Aether. Annal. Chem. Pharm. 57, 334 (1846)Google Scholar
  15. 15.
    Fanelli, A.J., Burlew, J.V.: Preparation of fine alumina powder in alcohol. J. Am. Ceram. Soc. 69, C174–C175 (1986)CrossRefGoogle Scholar
  16. 16.
    Gerrard, W., Kilburn, K.D.: Correlation between reactivity of the 1-carbon atom in alcohols, and certain properties of alkoxysilanes. J. Chem. Soc. pp. 1536–1539 (1956)Google Scholar
  17. 17.
    Gerrard, W., Woodhead, A.H.: Interaction of alcohols with silicon tetrachloride. J. Chem. Soc. pp. 519–522 (1951)Google Scholar
  18. 18.
    Goel, S.C., Chiang, M.Y., Gibbons, P.C., Buhro, W.E.: New chemistry for the sol-gel process: Acetone as a new condensation reagent. Mater. Res. Soc. Symp. Proc. 271, 3–13 (1992)Google Scholar
  19. 19.
    Hay, J.N., Raval, H.M.: Synthesis of organic-inorganic hybrids via the non-hydrolytic sol-gel process. Chem. Mater. 13, 3396–3403 (2001)CrossRefGoogle Scholar
  20. 20.
    Hench, L.L., West, J.K.: The sol-gel process. Chem. Rev. 90, 33–72 (1990)CrossRefGoogle Scholar
  21. 21.
    Hubert-Pfalzgraf, L.G.: Some aspects of homo and heterometallic alkoxides based on functional alkohols. Coord. Chem. Rev. 178–180, 967–997 (1998)CrossRefGoogle Scholar
  22. 22.
    Inoue, M.: Glycothermal synthesis of metal oxides. J. Phys.: Condens. Matter 16, S1291–S1303 (2004)Google Scholar
  23. 23.
    Inoue, M., Kitamura, K., Tanino, H., Nakayama, H., Inui, T.: Alcohothermal treatments of gibbsite: Mechanisms for the formation of boehmite. Clays Clay Miner. 37, 71–80 (1989)CrossRefGoogle Scholar
  24. 24.
    Inoue, M., Kominami, H., Inui, T.: Thermal transformation of χ-alumina formed by thermal decomposition of aluminum alkoxide in organic media. J. Am. Ceram. Soc. 75, 2597–2598 (1992)CrossRefGoogle Scholar
  25. 25.
    Inoue, M., Kominami, H., Inui, T.: Novel synthetic method for the catalytic use of thermally stable zirconia: Thermal decomposition of zirconium alkoxides in organic media. Appl. Catal., A 97, L25–L30 (1993)CrossRefGoogle Scholar
  26. 26.
    Inoue, M., Kominami, H., Otsu, H., Inui, T.: Synthesis of microcrystalline titania in organic media. Nippon Kagaku Kaishi pp. 1364–1366 (1991)Google Scholar
  27. 27.
    Ivanda, M., Music, S., Popovic, S., Gotic, M.: XRD, Raman and FT-IR spectroscopic observations of nanosized TiO2 synthesized by the sol-gel method based on an esterification reaction. J. Mol. Struct. 481, 645–649 (1999)CrossRefGoogle Scholar
  28. 28.
    Jansen, M., Guenther, E.: Oxide gels and ceramics prepared by a nonhydrolytic sol-gel process. Chem. Mater. 7, 2110–2114 (1995)CrossRefGoogle Scholar
  29. 29.
    Jolivet, J.P.: Metal oxide chemistry and synthesis. John Wiley & Sons Ltd.: Chichester, England (2000)Google Scholar
  30. 30.
    Jun, Y.W., Choi, J.S., Cheon, J.: Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes. Angew. Chem. Int. Ed. 45, 3414–3439 (2006)CrossRefGoogle Scholar
  31. 31.
    Kominami, H., Inoue, M., Inui, T.: Formation of niobium double oxides by the glycothermal method. Catal. Today 16, 309–317 (1993)CrossRefGoogle Scholar
  32. 32.
    Kominami, H., Kato, J., Murakami, S., Kera, Y., Inoue, M., Inui, T., Ohtani, B.: Synthesis of titanium IV oxide of ultra-high photocatalytic activity: High-temperature hydrolysis of titanium alkoxides with water liberated homogeneously from solvent alcohols. J. Mol. Catal. A: Chem. 144, 165–171 (1999)CrossRefGoogle Scholar
  33. 33.
    Livage, J., Henry, M., Sanchez, C.: Sol-gel chemistry of transition metal oxides. Prog. Solid State Chem. 18, 259–341 (1988)CrossRefGoogle Scholar
  34. 34.
    Mehrotra, R.C., Singh, A.: Recent trends in metal alkoxide chemistry. Prog. Inorg. Chem. 46, 239–454 (1997)CrossRefGoogle Scholar
  35. 35.
    de Mello Donega, C., Liljeroth, P., Vanmaekelbergh, D.: Physicochemical evaluation of the hot-injection method, a synthesis route for monodisperse nanocrystals. Small 1, 1152–1162 (2005)CrossRefGoogle Scholar
  36. 36.
    Nel, A., Xia, T., Mädler, L., Li, N.: Toxic potential of materials at the nanolevel. Science 311, 622–627 (2006)CrossRefGoogle Scholar
  37. 37.
    Niederberger, M.: Nonaqueous sol-gel routes to metal oxide nanoparticles. Acc. Chem. Res. 40, 793–800 (2007)CrossRefGoogle Scholar
  38. 38.
    Niederberger, M., Antonietti, M.: Nanomaterials chemistry: Recent developments and new directions, chap. Nonaqueous sol-gel routes to nanocrystalline metal oxides, pp. 119–138. Wiley-VCH (2007)Google Scholar
  39. 39.
    Niederberger, M., Garnweitner, G.: Organic reaction pathways in the nonaqueous synthesis of metal oxide nanoparticles. Chem. Eur. J. 12, 7282–7302 (2006)CrossRefGoogle Scholar
  40. 40.
    Park, J., Joo, J., Kwon, S.G., Jang, Y., Hyeon, T.: Synthesis of monodisperse spherical nanocrystals. Angew. Chem. Int. Ed. 46, 4630–4660 (2007)CrossRefGoogle Scholar
  41. 41.
    Pinna, N., Niederberger, M.: Surfactant-free nonaqueous synthesis of metal oxide nanostructures. Angew. Chem. Int. Ed. 47, 5292–5304 (2008)CrossRefGoogle Scholar
  42. 42.
    Ridge, D., Todd, M.: Studies in the formation mechanisms of alkyl orthosilicates. J. Chem. Soc. pp. 2637–2640 (1949)Google Scholar
  43. 43.
    Rochow, E.G., Gingold, K.: The conversion of chlorosilanes to siloxanes by dimethylformamide. J. Am. Chem. Soc. 76, 4852–4855 (1954)CrossRefGoogle Scholar
  44. 44.
    Schleich, D.M., Zhang, Y.: Preparation of some metal ferrite MFe2O4 thin films through a nonaqueous sol method. Mater. Res. Bull. 30, 447–452 (1995)CrossRefGoogle Scholar
  45. 45.
    Schwarz, R., Kuchen, W.: Über die Ätherspaltung mit Siliziumtetrachlorid. Chem. Ber. 89, 169–178 (1956)CrossRefGoogle Scholar
  46. 46.
    Trentler, T.J., Denler, T.E., Bertone, J.F., Agrawal, A., Colvin, V.L.: Synthesis of TiO2 nanocrystals by nonhydrolytic solution-based reactions. J. Am. Chem. Soc. 121, 1613–1614 (1999)CrossRefGoogle Scholar
  47. 47.
    Turova, N.Y., Turevskaya, E.P.: The chemistry of metal alkoxides. Kluwer Academic Publishers, Boston (2002)Google Scholar
  48. 48.
    Vioux, A.: Nonhydrolytic sol-gel routes to oxides. Chem. Mater. 9, 2292–2299 (1997)CrossRefGoogle Scholar
  49. 49.
    Zappel, A.: The reaction of chlorosilanes with benzaldehyde. J. Am. Chem. Soc. 77, 4228 (1955)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2009

Personalised recommendations